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Solid state reactions
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Solid state reactions

1. Solid compound -> gas
(reaction, decomposition)

2.Solid compound + gas -> solid compound

solid compound + liquid -> solid compound
Solid compound -> liquid (melt)

3. Solid compound -> solid compound

4. Intercalation
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Solid state reactions

(1) solid compound-> solid compound + gas

solid compound + gas -> solid compound

(2)    Addition: A(s) + B(g) -> C(s)

CaCO3 -> CaO(s) + CO2 MmOn->MmOn-δ + δ/2O2 

mMe(s) + n/2O2(g) ->MmOn(s)
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(1)    decomposition: A(s) -> B(s) + C(g)

Heterogeneous reactions:
1. Topochemical reactions: reactions occurring at the phase boundary

2. Diffusion kinetics: Reactions occur through the diffusion of the reactant by the solid 
reaction product (porous or non-porous) or through their mixture with the starting 

material



Topochemical reaction
•The topotactic reaction - the atomic arrangement of the crystals remains mostly unaffected

•Reactions may occur within materials without separation of the new phase.
•The minimum reorder.

• It is possible to synthesize metastable phases ("mild" conditions - "soft" chemistry 
procedures).

Dehydration MoO3·2H2O

Processing at medium temperatures MoO3 (type ReO3)

At higher temperatures a phase with mixed valence occurs:

MO3(s) -> MO3-x + 1/2xO2 4

Dihydrate D Monohydrare M Without water - form A



Decomposition reactions

Typical example:

CaCO3(s) -> CaO(s) + CO2(g)

A(s) -> B(s) + C(g)
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Incongruent dissociation evaporation
R(s) -> A(s) + B(g)

Congruent dissociation evaporation

R(s) -> A(g) + B(g) -> A(g)↓ + B(g) -> A(s) + B(g)

The solid R(s) is sublimed to the components. Component A is re-deposited

CO3
2-
 O2- + (CO2)ads

O2- + (CO2)ads -> O2- + CO2(g) 
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a = m(t)/m() = 1 – exp(-kt
n
)

Transformation solid -> solid

Nucleation and growth of one solid within another is described by 
Avrami kinetics - random and isolated nucleation with 1-D, 2-D or 

3-D growth

a = complete transformation fraction, k = velocity constant, τ = 
incubation nucleation time, n = exponent dependent on growth 

dimensionality

t

a = m(t)/m()

Nucleation of
crystals τ

Growth - with increasing particle 
surface, speed increases

all material has recrystallized

σ-curve: fraction of material 
transformed vs. log t.
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Kinetics of decomposition reactions -
decomposition of one phase

(nucleation-based reaction)

Dependence α-reaction time of isothermal decomposition of solids.
A induction period, B acceleration period; C period of deceleration 

(attenuation)

A(s) -> B(s) + C(g)

nukleace růst

Reactions involving nucleation can be described by Avrami
(or Avrami-Erofee) equation:

α
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Time t

Formation of separate nucleation of the product

Growth of nucleus into collisions; forming a 
solid reaction product on the surface

Growth of the solid layer of the reaction 
product at the expense of reducing the 
volume and surface of the unreacted 
substance
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gas

Solid 
compound

• Oxidation, metal halogenation, sulfidation, carbon saturation

• Special feature - the formation of a solid film layer on the 
metal surface,

• Diffusion of metal or non-metal through the product layer

• Characteristic is parabolic growth kinetics

(dx/dt = k/x)

• The limiting step is the diffusion of the reactants with the 
product layer growing on the solid phase of the reactant

2) Solid-gas reaction (addition)
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Diffusion kinetics: reactions occur at the diffusion of the reactant 
through the solid reaction product layer (porous or non-porous) or 

through their mixture with the starting material



Solid compound + O2  products
oxidation of metals

SiO2

Si
Free energy of the formation of selected
oxides in relation to temperature. High
negative Gibbs energy indicates more stable
oxides;

5.14 Å

[001]

[1-10]
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Solid state reaction
Mechanism of oxidation

10

Formation of oxide layers at the beginning of corrosion

Scheme of oxide layer growth at 
comparable rates of ion diffusion

The formation of corrosion products is influenced by a series of subsequent and parallel reactions:

1. Transition of metal in the form of ions and electrons to the oxide layer
2. Movement of Men+ metal ions and electrons in an oxide layer

3. Transmission of oxygen from the gas stream to the oxide surface
4. Oxygen adsorption on the surface

5. Transfer of adsorbed oxygen to an O2-

6. Transport of anions with O2- oxide layer
7. Oxide formation

Oads <- O2



Pilling-Bedworth’s criterion:

_____________XPB=
Molar volume of oxide
Moler volume of metal

XPB=
____________________________________(molar mass of oxide MmOn)x(density of metal)

mx(molar mass of metal)x(density of oxide MmOn) 

Vm,MO/Vm,M < 1 Vm,MO/Vm,M > 1

reaction mM + n/2O2 -> MmOn
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Solid state reaction
Mechanism of oxidation

Formation of oxide layers at the beginning of corrosion

Scheme of oxide layer growth at 
comparable rates of ion diffusion

Oads <- O2



When PB <1 or PB> 2, then the oxide layer is nonprotective
(NP) by being non-homogeneous (non-continuous) due to 
insufficient volume that uniformly covers the surface of the 
metal. The weight loss is always linear.

If 1 ≤ PB ≤ 2, the oxide layer is protective (P), adherent 
and strong, fire resistant due to high melting points, non-
conductive and non-porous. Diffusions are very slow.

If the PB = 1 - the oxidic layer is ideally protective

Pilling- Bedworth’s ratio (PB)
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Pilling – Bedworth’s criterion

Three types of oxides can form depending on the ratio of molar volumes of metal and oxides
a) magnesium forms a porous oxide film
b) aluminum forms a protective non-porous oxide film
c) iron forms an oxide film that peels off and produces weak protection.

K               0.45
Na             0.57
Ca              0.64

Mg 0.80

Al              1.28
Cu             1.72
Fe  (FeO)      1.78
Fe (Fe2O3)   2.15
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Solid state reaction
Solid compound + O2 -> solid compound

Linear growth law of protective layers

Oxidation of pure Mg in an atmosphere of oxygen 
at different temperatures
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Scheme of the process of 
forming a porous film on metal

layer

Vm,MX/Vm,M < 1
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Oxidation of iron in air at different temperatures

15

Diagram of oxygen diffusion 
through the layer during metal 
oxidation

Vm,MX/Vm,M > 1
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Solid state reaction
Solid compound + O2 -> solid compound

Parabolic growth law of protective layers



Reaction in the solid phase reaction 
between solid components

3. Solid compound-> solid compound
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Solid-state reactions - reactions involving solid reagents and / or products

Important types of solid-state reactions can be expressed by equations:

1) Т1 -> Т2 (a polymorphic transition, such as a graphite in a 
diamond)

2) Т1 + Т2 -> Т3 (synthesis reaction; such as spinel):
MgO + Al2O3 -> MgAl2O4);

3) Т1 + Т2 -> Т3 + Т4 (exchange reaction in the solid phase):
BaS+ ZnSO4 -> BaSO4 + ZnS
AgCl + NaI ->  AgI + NaCl

4) Т1 -> Т2 -> Т3 (the subsequent reaction):

La2O3 + 11Al2O3 -> 2LaAlO3 + 10Al2O3 -> LaAl11O18



Addition:  A + B      C
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• Basically, it is the calcination of two solids which 
react to form the desired product.
•The full-phase synthesis method is used to prepare 
a wide range of materials - metal oxides, sulphides, 
nitrates, aluminosilicates,
•disadvantages
•High temperatures (500-2000 ° C) are necessary 
because then the lattice energy is overcome and the 
cations and anions can diffuse into different 
positions.
• Many compounds may decompose at high 
temperatures.
• Reactions occur very slowly, but the elevated 
temperature is accelerated by increasing the 
diffusion rate
• Generally, the calcination temperature does not 
increase to the melting point of the substances, so 
the reactions are in a solid state.
The reaction temperature should not exceed 2/3 of 
the melting point of the compound with the lowest 
point of Tamman's law.

A=6cm2 A=12cm2

A=24cm2 A=48cm2

Reaction in the solid phase reaction 
between solid components

3. Solid compound-> solid compound



3. Solid compound-> solid compound

A large number of reactions. Most important for their progress is that all 
reagents are in a solid state.
An example of the reaction between oxides with the formation of spinels, 
silicates, tungsten, molybdates,

Special features:
The reaction starts with the contact of solids, the more contacts, the 

higher reaction rate;
After the formation of a solid product layer, the previous surface closes 

and for further transformation, diffusion through the product layer is 
required;
The reaction rate is determined by diffusion of the slowest component;

- The rate of reaction decreases with increasing the reaction product 
layer.



Solid state mechanisms and reactions 
- Addition reactions

The role of the phase interface in the reaction of solids
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Scheme of reaction of solid particles



Wagner’s theory of spinel formation

3. Solid compound-> solid compound

20

АО + В2О3 АВ2О4

Unilateral transfer of AO phase components; the 
reaction is located at the AB2O4 /B2O3 boundary

Unilateral transfer of phase component components of B2O3;; the 
reaction is located at the interfacial boundary AB2O4 /AO

Anti-diffusion A and B, the reaction is located at interfacial 
boundaries AB2O4 /AO a AB2O4 /B2O3



Charge balance in solid phase 
reactions

• 3Mg2+ diffuse against 2Al3+

• MgO/MgAl2O4 boundary

• 2Al3+ - 3Mg2+ + 4MgOMgAl2O4 LR

• MgAl2O4/Al2O3 boundary

• 3Mg2+ - 2Al3+ + 4Al2O3 ->3 MgAl2O4 PR

• Summary reaction

• 4MgO + 4Al2O3 4 MgAl2O4

• PR/LR growth rate of the interlayer = 3/1
21



4. Intercalation reaction
The host structure has a lower dimensionality (layered or chain structures 

- one-dimensional stacking).

Hguest + □x(host)↔ Hx(host)
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Reaction in solid state looks simple

Intercalation of potassium into graphite

Weak forces
in interlayers

Strong bonds

graphite: 8C(s) + K(l)----> C8K
+64°C
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Structure of intercalated graphite C24K. 
A/AB/BC/CA.

Potassium intercalated graphite/Purewal_Thesis_Ch2.pdf
Potassium intercalated graphite/Purewal_Thesis_Ch2.pdf


K(g)

K(ads) K+(ads)e-

e-

•By transferring the electron from K to the π*
free graphite band, the layers expand

K+

How to get into the layers?
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Pillared clays

Al13O4(OH)28
3+ - Keggin cation Al13

25
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Properties of solids

physical property: response to a specific stimulus, relation is defined by 

mathematical formula

(physical quantities – scalars, vectors, tensors)

Example: elastic deformation of isotropic elastic body

(Hooke’s law)      = E 

tensile stress  = F/A results in strain  = l/l0

 macroscopic effect

properties are connected with structure of solids (anisotropy, defects)

solid = macroscopic system consisting of large number of various particles 

(atoms, electrons, …) 

macroscopic quantities represent time-averaged values of microscopic 

quantities  statistical physics

l0

l0 + l





Microstates and macrostate of the system

every particle has a given energy (defined by momentum and position towards 

surroundings  6 parameters: x, y, z, px, py, pz)

microstate – specific microscopic configuration of the system, distribution of 

particular number of particles to energy levels (allowed stationary state of the 

system)

macrostate – state of macro system specified by macroscopic parameters (e.g., p, 
V, T, …)

particular macrostate can be realized by a large number of microstates with the 

same energy and different distribution of particles on energy levels

microstates with the same energy differs from 

each other only in distribution of particles on 

energy levels, number of particles is identical



Statistical physics

energy of the system cannot be exactly calculated – obtaining detailed information 

about microstates of an ensemble consisting of large number of particles and 

interactions between them is not possible

statistical physics – properties of macroscopic system are based on properties of 

particles

large number of particles in the system  statistical nature of the result

(macroscopic quantities represent time-averaged values of microscopic quantities)

precondition: all microstates are possible with the same probability

 looking for a distribution of energy on particular particles in the system realized 

by the largest number of microstates

classical statistics (Maxwell-Boltzmann) – particles in the system are 

distinguishable (e.g., atoms)

quantum statistics – particles cannot be distinguished

Fermi-Dirac – particles with half-integer spin (fermions, e.g., electrons)

Bose-Einstein – particles with integer spin (bosons, e.g., photons)



Maxwell-Boltzmann statistics

ensemble of N independent, distinguishable, and non-interacting particles (atoms), 

distribution over various energy states in thermal equilibrium

internal energy 
j

jj EnU


j

jnN

There is large number of possible distributions of N atoms on energy levels but 

probability of realizing particular distributions is different!

Ej – energy of particular atom on j-th energy level; nj – number of atoms with 

energy Ej (occupation number)



Example: ensemble with internal energy U = 4 consisting of 4 distinguishable 

identical atoms (N = 4) contains 5 energy levels, energy difference between 

adjacent levels is equal to one (E0 = 0, E1 = 1, E2 = 2, E3 = 3, E4 = 4), number of atoms 

on particular energy level is not limited

E4

E3

E2

E1

E0

A B C D E

n0 = 3

n4 = 1

n0 = 2

n2 = 2

n0 = 2

n1 = 1

n3 = 1

n0 = 1

n1 = 2

n2 = 1

n1 = 4

possible distributions of energy, 5 distributions (A-E) satisfy the macrostate (U = 4)



atoms are distinguishable, number of microstates in particular energy distributions 

has to be determined

E4

E3

E2

E1

E0

A1 A2 A3 A4

a a a

a

b b b

b

c

c

c c

d

d d d

4 microstates (A1-A4) correspond to energy distribution A



number of microstates corresponding to a particular 

energy distribution 


j

j

m
n

N
W

!

!

4
!3!1

!4
mW

B:  Wm = 6

C:  Wm = 12

D:  Wm = 12

E:  Wm = 1

 35 microstates in 5 

energy distributions

probability of energy distribution 

occurrence in the system




m

m

W

W
P

E4

E3

E2

E1

E0

A B C D E

0,114 0,171 0,343 0,343 0,029

energy distributions C and D are the most 

probable (the largest number of microstates)

number of microstates in particular energy 

distributions  Gaussian curve

A:



system containing large number of atoms (~1023)  Wm~1028, extremely narrow 

and high Gaussian curve, maximum corresponds to the most probable distribution of 

microstates

finding occupation number nj for which the  Wm function is maximized (at defined 

total energy and number of particles)




j

j

m
n

N
W

!

!


j

jj EnU 
j

jnN (U and N are constant)

(solution using Lagrange multipliers – not shown here)

 Maxwell-Boltzmann distribution (fMB)

MB

j

j

j

j f

kT

E

kT

E

Nn 























exp

exp











kT

E
Q

j

j

exppartition function

fMB gives occupation numbers nj for energy levels Ej at temperature T for the most 

probable distribution of microstates in the system



Thermal properties of solids

 response to application of heat

heat absorption  increase in temperature heat capacity

 increase in dimension thermal expansion

heat transfer to lower-temperature regions thermal conductivity

 based on vibrations of atoms around equilibrium positions

ordered oscillations of atoms in crystal  travelling lattice waves are 

produced (small amplitudes, high frequencies); 

quantized energy of lattice oscillations  energy quantum = phonon

transversal wavelongitudinal wave

(http://commons.wikimedia.org/wiki)



crystal consisting of discrete atoms (harmonic oscillators) connected by 

interatomic bonding, ordered periodic structure

oscillation of adjacent atoms  minimum wavelength min = 2 r0 (r0 – equilibrium 

interatomic distance) and maximum frequency of lattice waves max = vs /2r0

(vs – speed of sound in solid, max ~ 1013 s-1)

generation of lattice waves in crystal due to atomic vibrations

r0E

r



Vibrations of atoms

Simple harmonic oscillator

particle moving with an acceleration towards a fixed (equilibrium) point on the

straight line and whose magnitude is proportional to the displacement

restoring force 𝐹 = 𝑚𝑎 = 𝑚
𝜕2𝑦

𝜕𝑡2
= −𝐾𝑦 (𝑚 - internal mass, 𝐾 - stiffness constant)

𝑦 𝑡 = 𝑦0 cos 𝜔𝑡 +
𝑣0

𝜔
sin(𝜔𝑡)  𝑦 𝑡 = 𝐴 cos(𝜔𝑡 − 𝜑)

𝐴 - amplitude, 𝜑 - phase, angular frequency 𝜔 =
𝐾

𝑚
= 2𝜋𝑓 =

2𝜋

𝑇
, 𝑇 - time period,

velocity 𝑣 𝑡 =
𝜕𝑦

𝜕𝑡
= −𝐴𝜔 sin(𝜔𝑡 − 𝜑)

0 0 x

y

A

-A





y(x)

y

t  x1

4
𝑇

1

2
𝑇

3

4
𝑇 𝑇



0

t0

y0

 one-dimensional traveling wave 𝜓 𝑥, 𝑡 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 + 𝜑

𝑘 =
2𝜋

𝜆
- spatial angular frequency (wavenumber), 𝜆 - wavelength



Wave propagation and scattering in crystal

slightly different equations are used for wave description:

in one dimension 𝜓 𝑥, 𝑡 = 𝐴 cos[2𝜋 𝑘𝑥 − 𝜈𝑡 + 𝜑]

in three dimensions 𝜓  𝑟, 𝑡 = 𝐴 cos[2𝜋(𝑘 ∙  𝑟 − 𝜈𝑡) + φ]

or 𝜓  𝑟, 𝑡 = exp[𝑖(𝑘 ∙  𝑟 − 𝜔𝑡)

(𝜈 - frequency, 2𝜋𝜈 = 𝜔;  𝑟 - position vector; 𝑘 - wave vector with direction identical with the

direction of wave propagation and magnitude 𝑘 =
2𝜋

𝜆
)

scattering – wave 𝜓 scatters to another wave 𝜓′ with another wave vector 𝑘 but

with the same frequency

scattering amplitude is determined by an integral  𝑑 𝑟 𝜓′ ∗
𝑉𝜓

quantity 𝑉 describes some physical property (e.g., electron density, charge

density, lattice potential, …) and is periodic function of space

periodic function in one dimension

𝑉 𝑥 = 𝑉(𝑥 ± 𝑎) , 𝑎 – lattice periodicity (interatomic distance)



periodic function 𝑉(𝑥) may be represented as a Fourier series

𝑉 𝑥 =  

𝑛=−∞

∞

𝑉𝑛 exp[𝑖
2𝜋𝑛𝑥

𝑎
]

integer 𝑛 ≥ 0, Fourier coefficient 𝑉𝑛 may be found by multiplying by

exp[−𝑖
2𝜋𝑚𝑥

𝑎
] and integrating over the spatial period 

 

0

𝑎

exp 𝑖
2𝜋 𝑛 − 𝑚 𝑥

𝑎
𝑑𝑥 = 𝑎𝛿𝑚,𝑛

𝛿𝑚,𝑛 = 1 for 𝑚 = 𝑛 and 𝛿𝑚,𝑛 = 0 for 𝑚 ≠ 𝑛 (Kronecker’s delta)

𝑉𝑛 =
1

𝑎
 

0

𝑎

𝑉 𝑥 exp −𝑖
2𝜋𝑛𝑥

𝑎
𝑑𝑥

analogously, a three-dimensional periodic function 𝑉  𝑟 may be invariant under

translation in the lattice

𝑉  𝑟 + 𝑇 = 𝑉( 𝑟) , where 𝑇 = 𝑛1𝑢1 + 𝑛2𝑢2 + 𝑛3𝑢3

(𝑢1, 𝑢2, 𝑢3 - primitive lattice translation vectors, 𝑛1, 𝑛2, 𝑛3 - set of integers)



Reciprocal lattice

introduce a set of primitive reciprocal lattice vectors 𝑔1, 𝑔2, 𝑔3 such that

𝑔𝑖 ∙ 𝑢𝑗 = 2𝜋𝛿𝑖,𝑗 𝑖 = 1, 2, 3 , 𝑗 = 1, 2, 3

𝑔1 =
𝑢2×𝑢3

𝑢1∙(𝑢2×𝑢3)
, 𝑔2 =

𝑢3×𝑢1

𝑢1∙(𝑢2×𝑢3)
, 𝑔3 =

𝑢1×𝑢2

𝑢1∙(𝑢2×𝑢3)

each vector 𝑔1, 𝑔2, and 𝑔3 is perpendicular to two translation vectors in real 

lattice, therefore

𝑔1 ∙ 𝑢1 = 2𝜋 ,  𝑔2 ∙ 𝑢1 = 0 , 𝑔3 ∙ 𝑢1 = 0

𝑔1 ∙ 𝑢2 = 0 ,  𝑔2 ∙ 𝑢2 = 2π , 𝑔3 ∙ 𝑢2 = 0

𝑔1 ∙ 𝑢3 = 0 , 𝑔2 ∙ 𝑢3 = 0 , 𝑔3 ∙ 𝑢3 = 2𝜋

a general reciprocal lattice vector is expressed as linear combination of primitive 

reciprocal lattice vectors with integer coefficients

 𝐺 = 𝑗1𝑔1 + 𝑗2𝑔2 + 𝑗3𝑔3 - is described by set of integers 𝑗1, 𝑗2, 𝑗3

when integers have a common integer divisor (e.g., 2,4,6)   𝐺 is reducible

no common integer divisor (e.g., 1,2,3)   𝐺 is irreducible



Fourier expansion of periodic function 𝑉( 𝑟)

𝑉  𝑟 =  

 𝐺

𝑉𝐺 exp(𝑖  𝐺 ∙  𝑟)

𝑉𝐺 - set of Fourier coefficients; periodicity is obvious since

𝑉  𝑟 + 𝑇 =  

 𝐺

𝑉𝐺 exp[𝑖  𝐺 ∙  𝑟 + 𝑇 =  

 𝐺

𝑉𝐺 exp(𝑖  𝐺 ∙  𝑟) exp(𝑖  𝐺 ∙ 𝑇)

exp 𝑖  𝐺 ∙ 𝑇 = exp[𝑖(𝑗1𝑔1 + 𝑗2𝑔2 + 𝑗3𝑔3) ∙ (𝑛1𝑢1 + 𝑛2𝑢2 + 𝑛3𝑢3)

= exp[𝑖2𝜋(𝑗1𝑛1 + 𝑗2𝑛2 + 𝑗3𝑛3)

integer sum 𝑗1𝑛1 + 𝑗2𝑛2 + 𝑗3𝑛3  exp 𝑖  𝐺 ∙ 𝑇 = 1

𝑉  𝑟 + 𝑇 =  

 𝐺

𝑉𝐺 exp 𝑖  𝐺 ∙  𝑟 = 𝑉( 𝑟)

Fourier series of periodic function of space contains only components 𝑉𝐺 exp 𝑖  𝐺 ∙  𝑟

corresponding to reciprocal lattice vectors  𝐺 = 𝑗1𝑔1 + 𝑗2𝑔2 + 𝑗3𝑔3

Fourier series of periodic function 𝑉( 𝑟) cannot contain other points in reciprocal space



one-dimensional case of basic unit cell  interval 0 < x < a

analogous volume unit in three-dimensional case  Wigner-Seitz cell

definition: point in the crystal is selected as origin (O); all points  𝑟 in Wigner-Seitz cell are

closer to origin O than to any other point obtained by its translation through all possible

translation vectors 𝑇

boundary of Wigner-Seitz cell  polyhedron; every point on polyhedron face has a

corresponding point on an opposite face that may be reached by primitive lattice

translation vector

alternative construction of Wigner-Seitz cell: drawing lines from a single particular atom to

all other atoms occupying the same basis in other lattice cells and introducing

perpendicular bisecting planes of these lines  the atom is surrounded by polyhedron

Wigner-Seitz cell 

constructed in BCC 

structure



Relationship between reciprocal and direct lattices

set of points in direct lattice described by vectors  𝑟 originating at point O and satisfying the

equation

 𝐺 ∙  𝑟 = 2𝜋   𝐺 ∙  𝑟 =
2𝜋

 𝐺
(  𝐺 - irreducible reciprocal lattice vector,  𝐺 - unit vector)

linear equation of the form 𝐺𝑥𝑋 + 𝐺𝑦𝑌 + 𝐺𝑧𝑍 = 2𝜋 defines a plane in direct lattice

at distance 𝑑 =
2𝜋

 𝐺
from origin O and its normal is oriented along  𝐺

infinite set of parallel planes:  𝐺 ∙  𝑟 = 2𝜋𝑁   𝐺 ∙  𝑟 =
2𝜋𝑁

 𝐺
(  𝐺 - reducible, 𝑁 – any integer)

spacing between successive planes  𝑑 =
2𝜋

 𝐺
(  𝐺 - irreducible)

intersection of plane defined by  𝐺 ∙  𝑟 = 2𝜋 and axes defined by vectors 𝑔1, 𝑔2, 𝑔3

 𝐺 ∙  𝑟 =
2𝜋𝑗1

ℎ
= 2𝜋 for  𝑟 =

𝑢1

ℎ
 𝑗1 = ℎ ; analogously for 𝑗2 = 𝑘 and 𝑗3 = 𝑙

 planes with Miller indices (ℎ𝑘𝑙)  X-ray diffraction



direct lattice is defined by vectors  𝑎, 𝑏,

and  𝑐; reciprocal lattice can be defined by

vectors 𝑎∗, 𝑏∗, and 𝑐∗

vector 𝑎∗ is perpendicular to plane defined

by vectors  𝑎 and 𝑏, etc.

each vector in reciprocal lattice is

perpendicular to a set of parallel planes in

direct lattice

𝑑ℎ𝑘𝑙 =
2𝜋

 𝐺
, where  𝐺 = ℎ 𝑔1 + 𝑘 𝑔2 + 𝑙 𝑔3

Interaction of waves with ordered arrangement of atoms

structure in reciprocal space analogous to Wigner-Seitz cell in real space (lattice of

reciprocal lattice points in wave vector space (𝑘-space)

 first Brillouin zone  propagation of waves in solid



Vibrations of atoms in one-dimensional monoatomic lattice

assumption: elastic vibrations of crystal with one atom in primitive cell  chain 

of N identical atoms separated from each other by distance a

(n-1)a na (n+1)a (n+2)a

un-1 un un+1 un+2

x

𝑘

(n-1)a

un-1

na (n+1)a (n+2)a

un un+1 un+2

x

𝑘

longitudinal wave

transversal wave

lattice with longitudinally excited wave  coordinate of n-th atom with amplitude 

of displacement 𝑢𝑛(𝑡)

𝑥𝑛 𝑡 = 𝑛𝑎 + 𝑢𝑛(𝑡) ,  𝑛 = 1, 2, … , 𝑁

equations of motion (𝐾 - stiffness constant, 𝑀 - mass of atom)

𝑀
𝜕2𝑢𝑛

𝜕𝑡2
= 𝐾 𝑢𝑛+1 − 𝑢𝑛 − 𝐾(𝑢𝑛 − 𝑢𝑛−1) ,  𝑛 = 1, 2, … , 𝑁



lattice wave representing an excitation, in which successive oscillators bear 

definite phase relationship to the preceding oscillator

𝑢𝑛 𝑡 = 𝐴𝑗exp[𝑖 𝑘𝑗𝑛𝑎 − 𝜔𝑗𝑡 ]

periodic boundary condition  𝑢𝑛 𝑡 = 𝑢𝑛+𝑁(𝑡)

can be satisfied when the relative phase is an integer multiple of 2  wave 

vector is given by

𝑘𝑗 =
2𝜋𝑗

𝑁𝑎
where  𝑗 = 1, 2, … , 𝑁

equation of atoms motion

−𝑀𝜔𝑗
2𝐴𝑗 = 𝐾𝐴𝑗[exp 𝑖𝑘𝑗𝑎 + exp −𝑖𝑘𝑗𝑎 − 2]

 angular frequency as a function of wave vector

𝜔𝑗 =
4𝐾

𝑀
sin

𝑘𝑗𝑎

2



for large values of 𝑁  𝑘1 (and 𝜔1) can be made arbitrarily small

maximum excitation frequency occurs for 𝑘𝑗 = ±
𝜋

𝑎
(i.e., for 𝑗 =

𝑁

2
) 

𝜔𝑚𝑎𝑥 = 2
𝐾

𝑀
, for solids  𝜔𝑚𝑎𝑥 ≈ 1014 𝑟𝑎𝑑 𝑠−1

 lattice frequencies are broadened into a band from 0 to 𝜔𝑚𝑎𝑥

𝑗 varies from −
𝑁

2
to 

𝑁

2
, the allowed range of wave vectors 𝑘 from −

𝜋

𝑎
to 

𝜋

𝑎

(first Brillouin zone)  waves travelling in either direction can be equivalently 

treated

subscript 𝑗 can be omitted in the limit of large 𝑁  dispersion relation is 

obtained

𝜔 𝑘 = 2
𝐾

𝑀
sin

𝑘𝑎

2

linear dispersion relation for low 𝑘: 𝜔 𝑘 = 𝑘 𝑎
𝐾

𝑀
= 𝑘 𝑣𝑠 ,  𝑣𝑠 interpreted as 

speed of sound (in solids 103 – 104 m s-1)

Note: number of possible values of 𝑘 equals the 

number of cells in the lattice (𝑁)



Group velocity

pulse of excitations propagating along the chain travels with velocity

𝑣𝑔 =
𝜕𝜔

𝜕𝑘
= 𝑣𝑠 cos

𝑘𝑎

2
sgn(𝑘) , sgn 𝑘 = 1 for 𝑘 > 0 and sgn 𝑘 = −1 for 𝑘 < 0

slope of dispersion curve vanishes at the zone boundaries (𝑘 = −
𝜋

𝑎
and 𝑘 =

𝜋

𝑎
)

group velocity 𝑣𝑔 = 0 here

𝜔

4𝐾
𝑀

𝜋

𝑎
−

𝜋

𝑎

𝑘
0

1

𝜔

4𝐾
𝑀

𝜋

𝑎

1

0
𝑘

2𝜋

𝑎
1st Brillouin zone

dispersion relation 𝜔 𝑘 /
4𝐾

𝑀
for the excitations of the one-dimensional monoatomic lattice



 = a

 = 2a

 = 3a

 = 4a

a

one-dimensional lattice

lattice parameter 𝑎

wavelength 𝜆

reciprocal lattice

lattice parameter 

(periodicity) 2𝜋/𝑎

magnitude of wave

vector 𝑘 = 2𝜋/𝜆

Brillouin zone – primitive 

cell in reciprocal space

1st Brillouin zone

2/a

/a-/a

xxxx

/(2a)

2/(3a)

/a

2/a

2. BZ 3. BZ 4. BZ

wave vectors within the 1st Brillouin zone describe all unique waves 

interacting with ordered solid (represented by direct lattice); the 

waves with  = 2a and  = a cannot be distinguished

Brillouin zone and waves in solid



the red wave contains the same information 

as the green one

lattice waves with wavelength shorter than 

interatomic spacing would be meaningless

a



zero group velocity at Brillouin zone boundaries  Bragg scattering of the lattice

wave at 𝑘 =
𝜋

𝑎
=

2𝜋

𝜆
, wavelength 𝜆 = 2𝑎

for 𝑘 =
𝜋

𝑎
adjacent atoms are 180° out of phase, travelling wave cannot move 

standing wave is obtained

phase difference of adjacent atoms larger than  is possible but cannot be distinguished 

from other one (for example, relative phase shift of 1.2 and 4.2 is identical with that of      

–0.8 and 0.2, respectively)

waves with long wavelength: 𝑘𝑎 → 0, 𝜆 ≫ 𝑎  lattice can be treated as continuum



Heat capacity

internal energy of the system: kinetic and potential energy of all particles and other 

structure components (atoms/ions, electrons, defects); cannot be measured directly

heat capacity: ability of substance to absorb heat from surroundings in dependence 

on temperature (defined as ratio of the added heat per unit amount of solid to the 

resulting temperature change)
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U
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Dulong-Petit law

molar heat capacity of elements (as crystalline solids) are close to a constant value

cv ~ 25 J mol-1 K-1 (excepting some elements such as Be, B, C, and Si)

vibrational energy of atom in three perpendicular directions (x,y,z) is 3kT

U = 3NkT = 3RT (N = 6.023·1023 mol-1, k = 1,381·10-23 J K-1, R = 8,314 J mol-1 K-1)

R
T

U
c Vv 3)( 








Discrepancy in comparison with experimental measurements

1) no contribution of free electrons is observed in crystals of metals

 at least one electron from every atom, mean translational kinetic energy 3kT/2
(ideal gas), contribution of electrons to internal energy of metal Uel = 3RT/2 (per 

mol); molar heat capacity of metals should be cv = 3R + 3R/2 = 9R/2

2) at low temperatures (< 150 K) cv is dependent on temperature – changes with T3

D – Debye temperature

cannot be explained by classical physics

 dynamics of crystal structures is 

modelled using quantum mechanics

vibrational energy of atoms is described by 

concept of atoms as linear harmonic 

oscillators

(Einstein model, Debye model)



Einstein model of solid

Presumptions:

 every atom in lattice represents independent 3D quantum harmonic oscillator 

(discrete energy levels, 3 harmonic oscillators perpendicular to each other)

N atoms  3N independent oscillators, En = (n+½) h, n = 0, 1, 2, …, 
(quantum number)

 all atoms oscillate with the same frequency at given temperature

 distribution of energy according to Maxwell-Boltzmann statistics

Q

kT

E
E

NnEU
j

j

j

j

j

j













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exp

, after rearrangement
T

Q
NkTU






ln2

N atoms  3N linear harmonic oscillators

T

Q
NkTU






ln
3 2  determination of partition function Q is needed for 

calculation of internal energy U



energy of atom in crystal is sum of potential energy in equilibrium position and 

energy of vibrational motion around the equilibrium position

Ej = E0 + En

after substitution in partition function, rearrangement, and differentiating (not shown 

here):
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at high temperatures kT >> h, ...
3

1

2

1
1 ~exp

32




























kT

h

kT

h

kT

h

kT

h 

NkT3Nh
2

3
NE3U 0  R3Nk3)

T

U
(c VV 



a (Dulong-Petit law)

at low temperatures h >> kT, 1exp 








kT

h











kT

h

Nh
NhNEU






exp

3

2

3
3 0

























kT

h

kT

h
R

T

U
c VV


exp3)(

2

exponential dependence of heat capacity 

on temperature does not correspond to 

experimental measurements – f(T3)

too simplifying presumptions

(atoms as independent oscillators, 

oscillation of all atoms with the same 

frequency)
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Debye model 

interactions between oscillating atoms in the lattice  crystal approximated as 

elastic continuum (continuum mechanics can be used)

lattice waves travelling through the crystal, continuous frequency spectrum 

resembling quadratic function with upper limit – maximum frequency max

f() = a2 (a – constant depending on velocity of longitudinal and transversal

waves)

3N possible frequencies for N atoms in the crystal

2

3

max

9
)( 




N
f 

Ndadf 3)( 2

00

maxmax
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

phonon spectrum

f()

E

f()

max

Einstein model Debye model



energy of phonons within frequency range <, + d> is E f()d
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max

0

)(


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important parameter characterizing the crystal structure; increases with 

decreasing molar mass (D : C 2230 K, Fe 470 K, Pb 105 K)
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at high temperatures T >> D , ex ~ 1+x
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at low temperatures D >> T a D/T 
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 Fermi temperature TF ~ 5·104 K, at common temperatures

cv(el) ~ R/300



More accurate models

phonon spectrum derived from elastic continuum (quadratic function) was used in 

Debye model  calculation based on dynamics of particular crystal structure  

(e.g., Born-Kármán model)

f()

max

phonon spectrum

D

T

model

experiment

temperature dependence of D

Debye temperature is dependent on temperature and pressure, contribution of free 

electrons to heat capacity is more appreciable at low temperatures:
cV(phonons) = f(T3), cV(electrons) = f(T)

anharmonic effects during oscillation of atoms: Er = Er0 + A (r – r0)2 + B (r – r0)3 + …

only harmonic oscillations  infinite free path of phonons, no interactions between 

phonons, no thermal expansion



Thermal expansion

most solids expand upon heating and contract when cooled

change in length with increasing temperature: 𝑙 = 𝑙0[1 + 𝛼 𝑇 − 𝑇0 ]

T
l

l





0

 – linear coefficient of thermal expansion

thermal expansion is connected with dynamics of crystal structure

energy in dependence on interatomic 

distance – minimum at T = 0 K (r = r0)

energy of oscillation atoms increases with 

increasing temperature – atoms attain 

higher energy levels (E1, E2, E3, ...) with 

equilibrium interatomic distances r1, r2, r3, ...

symmetric dependence Er = f(r2)  no 

change in mean interatomic distance

(thermal expansion cannot be explained)



anharmonic components are involved

Er = Er0 + A (r – r0)2 + B (r – r0)3 + …

 Morse potential

(mean interatomic distance increases with 

increasing temperature)

solids with strong chemical bonds

(covalent, ionic)  slight thermal expansion

linear coefficient of thermal expansion (10-6 K-1): ceramic materials 0.5 – 15, 

metals 5 – 25, polymers 50 – 400

volume coefficient of thermal expansion T
V

V
V 




0

affected by anisotropy of crystal structure; in isotropic materials V ~ 3



 Tv
cc V

VP
0

2

 (v0 – molar volume,  - compressibility)



heat flux density  𝑞 = 𝜆 grad(𝑇) (Fourier’s law)

(heat flux density is oriented along temperature gragient)

 - thermal conductivity (W m-1 K-1)

common values: metals 20 – 400, ceramic materials 2 – 50, polymers ~ 0.3

Thermal conductivity

ability of solid to transfer heat between regions with different temperature

dx

dT
q  (analogous to diffusion, first Fick’s law)

Heat transfer in solids – energy carriers

phonons (insulators), electrons (metals), excitons (electron-hole pairs), 

photons (at high temperatures)

thermal conductivity of metals in proportional to electric conductivity

e = LT (Wiedemann-Franz law)

L – constant (Lorentz number), theoretical value of L = 2,44·10-8 WK-2



Resistance to thermal transfer

thermal conductivity is attributed mainly to moving electrons and lattice waves 

(phonons)

resistance of crystal to heat flux (analogy of electrical resistance) impedes 

equalization of temperatures

 interactions between energy carriers (phonon-phonon, electron-electron,

phonon-electron)

 scattering of energy carriers by point and line defects

 scattering of energy carriers by surface of crystal and grain boundaries

Example: three-phonon process

phonon-phonon interaction produces another phonon, overall energy and quasi-

momentum of the system have to be preserved

frequency 𝜈1 + 𝜈2 = 𝜈3

wave vectors 𝑘1 + 𝑘2 = 𝑘3 +  𝐺

(  𝐺 - reciprocal lattice vector)

𝑘1

𝑘2

𝑘3
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N-process U-process

overall crystal wave vector must be preserved  reciprocal lattice vector  𝐺
restores the net crystal wave vector to the first Brillouin zone when the final phonon 

wave vector 𝑘3 lies outside the zone

N-process (normal) – direction of energy propagation (phonon flux) is not 

changed,  𝐺 = 0

U-process (umklapp) – change in direction of energy propagation,  𝐺 ≠ 0, 

reciprocal lattice vector serves to bring the wave vector back inside the first 

Brillouin zone



Thermal stress and thermal shock

thermal expansion/contraction due to temperature changes can result in 

compressive and tensile strains in solid  undesirable plastic deformation (ductile 

metals, polymers) or fractures (brittle materials)

1) stress caused by restraining thermal expansion

proportional to   𝐸𝛼∆𝑇 (𝐸 – modulus of elasticity)

2) stress caused by temperature gradients in solid

temperature distribution inside the solid depends on size, shape, thermal conductivity, and 

rate of heating or cooling  temperature differences between exterior and interior regions 

result in different thermal expansion and compressive or tensile stresses within the solid

thermal shock resistance is given by thermal and mechanical properties

proportional to (𝜎𝑐𝑟 – critical stress)

Example: enhancement of thermal shock resistance by changing the linear coefficient of 

thermal expansion of glass

common soda-lime glass  ~ 9·10-6 K-1, borosilicate (Pyrex) glass  ~ 3·10-6 K-1

𝜎𝑐𝑟𝜆

𝐸𝛼
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electrical conduction – gradient of outer electric field results in motion of charge 

carriers (electrons, ions, holes)

electrical conductivity  = e n n + e p p [-1 m-1]

Metals (conductors)     = 106 – 107 -1 m-1

Na: 1s2 2s2 2p6 3s1 Mg: 1s2 2s2 2p6 3s2

energy band structure

valence electrons can move freely within the crystal, even weak electric field induces 

electron motion and charge transfer



conduction

band

valence

band

Eg

conduction

band

valence

band

Eg

Insulators (dielectrics)

 = 10-9 – 10-13 -1 m-1

valence band completely filled

with electrons, separated from

empty conduction band by wide

bandgap (Eg > 3 eV)

electrons cannot be excited to

conduction band

polarization by applied electric

field

Semiconductors

 = 10-6 – 105 -1 m-1

valence band completely filled

with electrons, separated from

empty conduction band by

relatively narrow band gap (Eg

< 3 eV)

possible excitation of electrons

to conduction band

charge carriers – electrons and

holes

Superconductors  = 1023 – 1025 -1 m-1

some metals, alloys, and intermetallic compounds, sudden drop in electrical resistance at 

very low temperatures (Tc up to about 20 K), attractive interactions between electrons 

(Cooper pairs), “high-temperature” oxide superconductors (TC > 90 K)

Ionic conductors

some ionic crystals, solid electrolytes; ions as charge carriers; in some materials relatively 

high conductivity at common temperatures  superionic conductors ( = 101 – 102 -1 m-1)



Electrical properties of metals

metallic bonding – electrostatic attraction between cloud of delocalized (“conduction”) 

electrons and positively charged metal ions  sharing of free electrons among lattice cations 

(electron gas)

applied electric field accelerates electron motion

hindrances of free motion of electrons:

– scattering due to collisions with oscillating lattice cations

– scattering on lattice defects (vacancies, line defects,

impurity atoms, grain boundaries) 

– scattering due to interactions between electrons

oscillations of atoms and concentration of defects increase

with increasing temperature

 electrical conductivity of metals decreases with

increasing temperature

properties of metals are explained using quantum mechanics (Sommerfeld model of free 

electrons in metals)



Ohm’s law

absence of electric field: electrons move in all directions, sum of velocities is zero

applied electric field: acceleration and scattering of moving electrons (deflection and 

randomizing velocity of electrons)  drift of electrons against direction of the electric field

-

𝐸

only collisions of moving electrons 

with lattice atoms, impurities and 

defects are considered, classical 

mechanics can be applied (Drude

model)

force acting on electron in external electric field 𝐹 = −𝑒𝐸 = −𝑚𝑒𝑎

electron acceleration within time between two collisions (velocity ∆𝑣 is maximum at time 𝜏)

mean electron velocity between two collisions

(difference in electric potential 𝑈 (voltage) at ends of conductor with length 𝑙:   𝑈 = 𝐸 𝑙)

𝑎 =
∆𝑣

𝜏
, ∆𝑣 =

𝑒 𝐸 𝜏

𝑚𝑒

𝑣𝐷 =
∆𝑣

2
=
𝑒 𝐸 𝜏

2𝑚𝑒
=
𝑒
𝑈
𝑙
𝜏

2𝑚𝑒



current through a conductor with cross-section area 𝐴 at concentration of electrons 𝑛

𝐼 = 𝑛 𝐴 𝑒 𝑣𝐷 =
𝑛 𝐴 𝑒2𝐸 𝜏

2𝑚𝑒
=
𝑛 𝑒2𝜏

2𝑚𝑒

𝐴

𝑙
𝑈 =

1

𝑅
𝑈

Ohm’s law derived from concept of free electrons in metals

1

𝑅
=
𝑛 𝑒2𝜏

2𝑚𝑒

𝐴

𝑙
, 𝑈 =

1

𝑅
𝐼

electrical conductivity

𝜎 =
𝑛 𝑒2𝜏

2𝑚𝑒
Ω−1𝑚−1

mobility of charge carriers (electrons)

𝜇𝑛 =
𝑒 𝜏

2𝑚𝑒
𝑚2𝑉−1𝑠−1

resistivity

𝜌 =
1

𝑛 𝑒 𝜇𝑛
Ω𝑚

1

𝜌
= 𝜎 = 𝑛 𝑒 𝜇𝑛



Fermi-Dirac quantum statistics

ensemble of N indistinguishable particles with half-integer spin (electrons) occupying energy 

levels Ej ; j = 1, …, s

only one particle is allowed in each energy state

degenerate energy levels  group of energy sublevels (slightly different energy states) gj ; j = 
1, …, s

(gj = degeneracy of j-th level, larger number of possible energy states compared to atoms)

degeneracy of energy level Es  gs sublevels occupied by ns electrons

each sublevel is either occupied by one electron or empty (according to Pauli exclusion 

principle)

 ns sublevels occupied, (gs – ns) sublevels remain unoccupied,   gs ≥ ns

number of microstates in energy level Es (i.e., number of independent ways for distributing ns

electrons in energy level Es)

𝑊𝑠 =
𝑔𝑠!

𝑛𝑠! 𝑔𝑠 − 𝑛𝑠 !



Example: number of microstates in energy level Es degenerate with 4 sublevels occupied 

with various number of electrons

degeneracy (gs) number of electrons in energy level
(ns)

number of microsites in energy 
level (Ws)

4 0 1

4 1 4

4 2 6

4 3 4

4 4 1

Es

six possible microstates in energy level Es degenerate with four sublevels occupied by two 

electrons (gs = 4, ns = 2, Ws = 6)



number of microstates for realizing energy distribution in macrostate involving all possible 

energy levels Ej (arrangements in particular energy levels are independent on each other)

(U and N are constants)

the most probable distribution corresponds to the largest number of microstates realizing 
the macrostate  finding the maximum value of W when overall energy and number of 

particles are preserved

Fermi-Dirac distribution (probability function, fFD)

probability of occupying the energy level Ej,

0 ≤ 𝑓𝐹𝐷 ≤ 1

EF – Fermi energy

𝑊 = 

𝑗

𝑔𝑗!

𝑛𝑗! 𝑔𝑗 − 𝑛𝑗 !

𝑈 = 

𝑗

𝑛𝑗𝐸𝑗 𝑁 = 

𝑗

𝑛𝑗

𝑛𝑗

𝑔𝑗
=

1

exp
𝐸𝑗 − 𝐸𝑓
𝑘𝑇

+ 1

= 𝑓𝐹𝐷



Free particle wave

general free-particle wave function (in 1D):

complex function can be expanded  𝜓 𝑥, 𝑡 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 − 𝑖𝐴 sin(𝑘𝑥 − 𝜔𝑡)

associated with momentum                                𝑘 - wave vector

𝜓 𝑥, 𝑡 = 𝐴 exp[𝑖
2𝜋

𝜆
− 𝜔𝑡 = 𝐴 exp[𝑖 𝑘𝑥 − 𝜔𝑡 ]

𝑝 =
ℎ

𝜆
=
ℎ𝑘

2𝜋
= ℏ𝑘

wave function for electron

𝜓 𝑥, 𝑡 = 𝐴 exp[𝑖 𝑘𝑥 − 𝜔𝑡 ]

𝜓 𝑥, 𝑡 = 𝐴 cos(𝑘𝑥 − 𝜔𝑡)

𝑝 - electron momentum

(de Broglie relationship)

𝑘 =
2𝜋

𝜆
=
2𝜋𝑝

ℎ
𝜔 =

𝜔ℏ

ℏ
=
𝐸

ℏ
𝐸 - electron energy

(Planck relationship)



Approximations in quantum theory of solids

quantum theory of solids – solution of Schrödinger equation for stationary state

(solid – system of N atoms containing N cores and NZ electrons (Z = atomic number), 

interactions between all particles are considered)

wave function 𝜓(𝑟1, … , 𝑟𝑁𝑍; 𝑅1, … , 𝑅𝑁), 𝑟𝑘 and 𝑅𝑖 - position vectors of electron and core

 𝐻𝜓 = 𝐸𝜓

Hamiltonian (sum of operators corresponding to kinetic and potential energies of a system) 

 𝐻 =  𝑇 +  𝑈 = −
ℏ2

2𝑚
∆ +  𝑈 ∆=

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
ℏ =

ℎ

2𝜋

− 

𝑘

ℏ2

2𝑚𝑒
∆𝑘 − 

𝑖

ℏ2

2𝑚𝑐
∆𝑖 +

1

2
 

𝑘≠𝑙

𝑒𝑟
2

𝑟𝑘𝑙
+ 𝑈2 𝑟1, … , 𝑟𝑁𝑍; 𝑅1, … , 𝑅𝑁 + 𝑈3(𝑅1, … , 𝑅𝑁) 𝜓 = 𝐸𝜓

𝑈1 =
1

2
 

𝑘≠𝑙

𝑒𝑟
2

𝑟𝑘𝑙
- potential energy of pair electron interactions, 𝑒𝑟

2 =
𝑒2

4𝜋𝜀0

𝑈2 - potential energy of core-electron interactions, 𝑈3 - potential energy of cores



Born-Oppenheimer approximation

system of particles  subsystem of electrons and subsystem of cores

𝑚𝑒 ≪ 𝑚𝑐, electrons move in a field of stationary cores, potential energy of cores 𝑈3 = 0

− 

𝑘

ℏ2

2𝑚𝑒
∆𝑘 +

1

2
 

𝑘≠𝑙

𝑒𝑟
2

𝑟𝑘𝑙
+ 𝑈2 𝑟1, … , 𝑟𝑁𝑍; 𝑅1

0, … , 𝑅𝑁
0 𝜓𝑒 = 𝐸𝑒𝜓𝑒

Hartree-Fock approximation

interactions between electrons  interaction between a single electron and a mean field of 

all other electrons and all cores

potential energy of electron in a field of stationary cores

𝑈2 = 

𝑘

𝑈𝑘( 𝑅1
0, … , 𝑅𝑁

0 ) = 

𝑘

𝑈𝑘(𝑟𝑘)

potential energy of electron in a field of all other electrons

1

2
 

𝑘≠𝑙

𝑒𝑟
2

𝑟𝑘𝑙
= 

𝑘

𝑈′(𝑟𝑘)



a single electron in a potential field of all stationary cores and all other electrons in the 

system

 𝑈 𝑟𝑘 = 𝑈 𝑟𝑘 + 𝑈′(𝑟𝑘)

−
ℏ2

2𝑚𝑒
Δ𝑘 +  𝑈(𝑟𝑘) 𝜓𝑘 = 𝐸𝑘𝜓𝑘

Kronig-Penney model

potential field  𝑈(𝑟𝑘) is periodic according to lattice periodicity

Kronig-Penney model is a simplified model for an electron in one-dimensional periodic 

potential (periodic square wave)

+ + + +

U(r)

r

free-electron model

Kronig-Penney model

electron energy band model

potential energy of 

electrons in solid



Free-electron model

Presumptions:

- free motion of electrons within a metal (invariable potential energy)

- quantized energy of electrons, Pauli exclusion principle in occupancy of energy levels

- probability of occupying energy levels at T > 0 K given by Fermi-Dirac distribution

U = ∞U = ∞

U = U0

x = 0 x = L

quantum well

Schrödinger equation for electron in quantum well

−
ℏ2

2𝑚𝑒
∆ + 𝑈0 𝜓 = 𝐸𝜓

wave function periodic along x, y, and z axes with 

periodicity of L (Born-Kármán boundary conditions) 

𝜓 𝑥, 𝑦, 𝑧 = 𝜓 𝑥 + 𝐿, 𝑦, 𝑧 = 𝜓 𝑥, 𝑦 + 𝐿, 𝑧 = 𝜓(𝑥, 𝑦, 𝑧 + 𝐿)

𝜓  𝑟 = 𝐴 exp 𝑖𝑘  𝑟

 𝑟 𝑘– position vector, – wave vector, 𝑘 =
2𝜋

𝜆
, 𝐴 = 𝑐𝑜𝑛𝑠𝑡

 looking for E vs. 𝑘 relationship

crystal of 

a metal



periodicity of wave function: exp 𝑖𝑘𝑥𝑥 = exp 𝑖𝑘𝑥(𝑥 + 𝐿) = exp 𝑖𝑘𝑥𝐿 exp(𝑖𝑘𝑥𝑥)

where exp 𝑖𝑘𝑥𝐿 = cos 𝑘𝑥𝐿 + 𝑖 sin 𝑘𝑥𝐿 = 1

wave vector components 𝑘𝑥𝐿 = 2𝜋𝑛𝑥  𝑘𝑥 = 2𝜋𝑛𝑥/𝐿 , 𝑘𝑦 = 2𝜋𝑛𝑦/𝐿 , 𝑘𝑧 = 2𝜋𝑛𝑧/𝐿

𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧 - free electron quantum numbers (0, 1, 2, ...)

electron energy related to potential energy 𝑈0

𝐸 =
ℏ2

2𝑚𝑒
𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 =

ℏ2

2𝑚𝑒

2𝜋

𝐿

2

𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2

first three energy levels and wave functions 

of free electrons; quantum number 𝑛 gives 

number of half-wavelengths in the wave 

function

(adapted from Kittel C., Introduction to Solid State Physics, 

8th Edition, John Willey & Sons, 2005)
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k-space filled with cells of volume (
2𝜋

𝐿
)3

one cell in k-space = particular energy level, 

which can be occupied by two electrons with 

opposite spin

electrons occupy energy states within a sphere 

with radius of k0  N electrons will occupy N/2
cells

4
3
𝜋𝑘0

3

8𝜋3

𝐿3

=
𝐿3𝑘0

3

6𝜋2
=
𝑁

2
𝑘0 =

3𝜋2𝑁

𝐿3

1
3

𝑘0
2 = 𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2

Fermi sphere

Fermi energy

energy of the highest occupied state at T = 0 K

𝐸𝐹 =
ℏ2

2𝑚𝑒

3𝜋2𝑁

𝐿3

2
3

kz

ky

kx
2/L

𝑘



G(E)

EEF

T > 0 K
T = 0 K

f(E)

EEF

T > 0 K

T = 0 K

0

0,5

1

~ 2kT

density of energy states in dependence on energy – redistribution of electrons in energy 
levels at T > 0 K, some electrons are thermally excited to energy states with E > EF (total

number of electrons does not change)

redistribution of electrons according to Fermi-Dirac 

statistics

𝑓 𝐸 =
1

exp
𝐸 − 𝐸𝐹
𝑘𝑇

+ 1

Fermi-Dirac distribution at various temperatures

(TF = EF/k = 50000 K; copied from Kittel C., Introduction to Solid 

State Physics, 8th Edition, John Willey & Sons, 2005)

valid up to T ~ 104 K 

Fermi temperature (TF) can be exceeded 

at T >> 0, TF = EF/k  E – EF >> kT

all electrons under Fermi energy will be 

thermally excited



Electron motion in periodic potential field

free electron model – invariable potential in whole crystal is expected

3D periodicity of crystal structure  periodic changes in the potential field

−
ℏ2

2𝑚𝑒
∆ + 𝑈  𝑟 𝜓 = 𝐸𝜓

periodic change of potential energy 𝑈  𝑟 = 𝑈  𝑟 +  𝑡 ,   𝑡 = 𝑡1𝑎1 + 𝑡2𝑎2 + 𝑡3𝑎3

𝑎1, 𝑎2, 𝑎3 – primitive lattice vectors

 solution – Bloch wave function 𝝍 𝒓 = 𝒖
𝒌
𝒓 𝐞𝐱𝐩(𝒊𝒌𝒓)

(wave function for particle in a periodically repeating environment – electron in crystal)

𝑢𝑘  𝑟 = 𝑢𝑘( 𝑟 +  𝑡) - periodic function with the same periodicity as the crystal lattice

dependent on wave vector 𝑘 and the periodic potential field 𝑈( 𝑟)

 periodic character of electron energy E

periodic potential energy of electron according to Kronig-Penney model

 electron energy bands in solid



Kronig-Penney model

one-dimensional periodic potential energy, series of square wells

0-b c c+b

a (lattice periodicity)

x

U(x)

U0

t = a = c + b

0 < x < c       U = 0

-b < x < 0     U = U0

rearrangement of Schrödinger equation

𝑑2𝜓

𝑑𝑥2
+
2𝑚𝑒

ℏ2
𝐸𝜓 = 0 0 < 𝑥 < 𝑐,

𝑑2𝜓

𝑑𝑥2
+
2𝑚𝑒

ℏ2
𝐸 − 𝑈0 𝜓 = 0 − 𝑏 < 𝑥 < 0



function 𝜓 in Schrödinger equation is replaced with one-dimensional Bloch wave function

𝜓 𝑥 = 𝑢𝑘𝑥 𝑥 exp(𝑖𝑘𝑥𝑥)

(solution is not shown here, it can be seen e.g. in Kittel C., Introduction to Solid State Physics, 8th Edition, 

John Willey & Sons, 2005)

 simplified relationship

𝑃
sin(𝛾𝑎)

𝛾𝑎
+ cos 𝛾𝑎 = cos 𝑘𝑥𝑎 𝛾2 =

2𝑚𝑒𝐸

ℏ2
𝑃 = 𝑘𝑜𝑛𝑠𝑡

cos 𝑘𝑥𝑎 may attain only values in the range from -1 to +1, relationship can be satisfied only 

with certain energy values  allowed energy E (energy bands)

dependence of [
sin 𝛾𝑎

𝛾𝑎
+ cos 𝛾𝑎 ] on 𝑘𝑥𝑎 for P = 3/2



Energy of electrons and periodic lattice

6𝜋

𝐿
−
2𝜋

𝐿
−
6𝜋

𝐿

2𝜋

𝐿
0 k

E

k

E

0 6𝜋

𝑎
−
2𝜋

𝑎
−
6𝜋

𝑎

2𝜋

𝑎
0 k

E

electrons out of 

solid

free-electron 

model

allowed 

energy 

states

Kronig-Penney model
n/a >> n/L

𝐸 =
ℏ2𝑘2

2𝑚𝑒

electron energy 

as a function of 

wave vector
energy levels of electrons 

with more tight bonding 

to atoms

(Kronig-Penney model)

energy levels of (nearly) 

free electrons in crystal

(free-electron model)

electrons out of solid
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a ~ 10-10 m

crystal, L ~ 100 m

EF



reciprocal lattice  reflects direct lattice periodicity in reciprocal space

direct lattice periodicity (interatomic distance) a  2/a in reciprocal space

allowed wave vectors 𝑘 (allowed electron energy states)  magnitude in reciprocal length 

units in reciprocal space (  2/)

one-dimensional reciprocal lattice with 

periodicity of 2/a −
4𝜋

𝑎
−
2𝜋

𝑎

2𝜋

𝑎

4𝜋

𝑎
0

electron motion in solid – traveling wave with wavelength 

comparable to lattice periodicity  diffraction may occur due to 

interaction of electron with atoms ordered in a lattice

Bragg plane = plane in reciprocal space perpendicular to reciprocal 

lattice vector bisecting the lattice vector

 lattice vector with length of 2/a is bisected in distance of /a

−
4𝜋

𝑎
−
2𝜋

𝑎

2𝜋

𝑎

4𝜋

𝑎
0

1st Bragg plane

2nd Bragg plane

𝜋

𝑎



−
4𝜋

𝑎
−
2𝜋

𝑎

2𝜋

𝑎

4𝜋

𝑎
0

𝐸

Bragg planes in one-dimensional 

reciprocal lattice

diffraction occurs when wave vector touches 

the Bragg plane

Bragg’s law 𝑛𝜆 = 2𝑎 sin 𝜃

wave vector meeting the Bragg condition in 

reciprocal lattice

interaction of electron waves with periodic lattice  diffraction only with particular wave 

vectors 𝑘, discontinuity at Bragg planes

free-electron model

length of electron wave vectors               considerably shorter compared to lattice periodicity

 closely packed energy levels – “continuum”

𝑘 =
2𝜋

𝜆
 𝑘 =

𝑛𝜋

𝑎 sin 𝜃

𝑘 =
𝑛𝜋

𝐿



Brillouin zones

dependence of electron energy 𝐸 on wave vector 𝑘 is not continuous at 𝑘 = ±
𝑛𝜋

𝑎
, 𝑛 = 1, 2,…

first allowed electron energy band (n = 1) for k values in the range from – /a to /a
 first Brillouin zone

k values in the range from –2/a to –/a and from /a to 2/a  second Brillouin zone

energy bandgap  discontinuity at boundary between zones

allowed energy bands

Eg

Eg

Eg
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repeating of 𝐸 𝑘 function 

within reciprocal lattice with 

periodicity of 2/a

course of the of 𝐸 𝑘 function

represents electron energy 

band

(extended zone scheme)

reduced zone scheme

shows course of 𝐸 𝑘 function in 

reciprocal space between the first 

Bragg planes from the origin

(range from –/a to /a  1. BZ)

represents information about 

interaction between wave vectors 

and periodic lattice



Origin of energy gap

wave traveling along the x-axis: 𝜓𝑡𝑟𝑎𝑣 = exp(𝑖𝑘𝑥) or 𝜓𝑡𝑟𝑎𝑣 = exp(−𝑖𝑘𝑥)

electron density for traveling wave is invariant as 𝜌 ~ 𝜓𝑡𝑟𝑎𝑣
2 = exp 𝑖𝑘𝑥 exp −𝑖𝑘𝑥 = 1

wave with wave vector 𝑘 = ±
𝜋

𝑎
 equal parts of wave travel to the left and to the right, wave 

vectors satisfy the Bragg condition, waves are reflected to travel in opposite direction

each subsequent Bragg reflection = reversing the direction of traveling  standing wave

𝜓𝑠𝑡𝑎𝑛𝑑
+ = exp 𝑖

𝜋𝑥

𝑎
+ exp −𝑖

𝜋𝑥

𝑎
= 2 cos

𝜋𝑥

𝑎

𝜓𝑠𝑡𝑎𝑛𝑑
− = exp 𝑖

𝜋𝑥

𝑎
− exp −𝑖

𝜋𝑥

𝑎
= 𝑖 2 sin

𝜋𝑥

𝑎

difference in electron density distribution of standing waves

𝜌 ~ 𝜓𝑠𝑡𝑎𝑛𝑑
+ 2 = 2cos2

𝜋𝑥

𝑎
, 𝜌 ~ 𝜓𝑠𝑡𝑎𝑛𝑑

− 2 = 2sin2
𝜋𝑥

𝑎

electron density 

distribution, 𝜌

a x

𝜓𝑠𝑡𝑎𝑛𝑑
+ 2

𝜓𝑠𝑡𝑎𝑛𝑑
− 2

𝜓𝑡𝑟𝑎𝑣
2

electron accumulation 

at ionized atoms

electron accumulation 

between ionized atoms



attractive interactions between ionized atoms and electrons  negative potential energy of 

electrons

therefore     𝐸1 𝜓𝑠𝑡𝑎𝑛𝑑
+ < 𝐸2 𝜓𝑠𝑡𝑎𝑛𝑑

−

𝐸2 − 𝐸1 = 𝐸𝑔

there is no other solution for  𝑘 = ±
𝜋

𝑎
, no electron can attain energy between 𝐸1 and 𝐸2

length of wave vector k < /a  free motion 

of electron within crystal

deformation of lines with constant energy close to 1st BZ boundary – at the boundary 

(k =  /a) there are two values of electron energy E

Brillouin zones in reciprocal 

2D square lattice

𝐸2

𝐸1

𝐸

𝑘0 𝜋

𝑎
−
𝜋

𝑎

energy gap



Semiconductors

covalent bonds between atoms  completely filled valence band, empty conduction band, 

narrow band gap (Eg < ~ 3 eV)

elemental semiconductors (Si, Ge) – covalent bonding, diamond cubic crystal structure

compound semiconductors – polar covalent bonding, sphalerite-like

crystal structure

AIIIBV (GaAs, AlAs, InP, …)

AIIBVI (CdS, ZnTe, …)

Intrinsic semiconductors

excitation of electrons (e-) into conduction 

band  electrical conductivity

vacant electron state in valence band

- holes (h+); moving other valence electron 

to fill the incomplete bond  holes motion 

(contribution to conductivity)

electron + hole = exciton (quasiparticle)

equilibrium between generation of 

electron-hole pairs and their recombinationT = 0 K T > 0 K



energy band structure of semiconductor and dispersion 

relation in reciprocal space within the first Brillouin zone

the lowest energy state in conduction 

band (EC) – electron with potential energy 

𝐸 ≥ 𝐸𝐶 is accelerated by external electric 

field  kinetic energy

the highest energy state in valence band 

(EV) – potential energy of electron 𝐸 ≤ 𝐸𝑉; 

increasing in hole potential energy = 

increasing in potential energy of electron 

in valence band

band gap 𝐸𝑔 = 𝐸𝐶 − 𝐸𝑉

probability of electron energy state occupation at T = 0 K:  𝑓 𝐸𝑉 = 1, 𝑓 𝐸𝑐 = 0

1

exp
𝐸𝐶 − 𝐸𝐹
𝑘𝑇

+ 1
= 1 −

1

exp
𝐸𝑉 − 𝐸𝐹
𝑘𝑇

+ 1
satisfied only for 𝐸𝐹 =

𝐸𝑐 + 𝐸𝑉
2

 in semiconductors  𝑓 𝐸𝐹 = 0.5

conduction

band

valence

band

Eg

EV

EC



electrical conductivity: 𝜎 = 𝜎𝑛 + 𝜎𝑝 = 𝑛 𝑒 𝜇𝑛 + 𝑝 𝑒 𝜇𝑝 intrinsic semiconductor:  𝑛𝑖 = 𝑝𝑖

two types of charge carrier, motion of electrons 

due to applied electric field

semiconductor Eg [eV]  [-1 m-1] µn [m2 V-1 s-1] µp [m2 V-1 s-1]

Si 1,11 4·10-4 0,14 0,05

Ge 0,67 2,2 0,38 0,18

GaP 2,25 - 0,05 0,002

GaAs 1,42 10-6 0,85 0,45

InSb 0,17 2·104 7,7 0,07

CdS 2,40 - 0,03 -

ZnTe 2,26 - 0,03 0,01



Direct and indirect band gaps

minimum energy state in conduction band and maximum energy state in valence band are 

each characterized by a certain crystal momentum (wave vector) in the first Brillouin zone

direct band gap: electrons and holes in both bands have the same wave vectors, excitation 

of electron without change in wave vector

indirect band gap: electron cannot shift from the highest energy state in valence band to the 

lowest energy state in conduction band without change in wave vector; phonon-assisted 

transition is necessary

photon absorption in semiconductors with direct and indirect band gaps

(copied from J. Soubusta, Fyzika pevných látek SLO/PL, Univerzita Palackého v Olomouci, 2012)



Extrinsic semiconductors

electrical conductivity is affected by substitutional defects in crystal lattice (impurity atoms 

with other number of valence electrons – donors or acceptors of electrons)

both donors and acceptors of electrons are present in the semiconductor  conductivity is 

determined by type of substitutional defects with higher concentration

n-type semiconductor

donor impurity level within the semiconductor band gap close to conduction band, low energy 

needed for ionization of donor atoms



p-type semiconductor

acceptor impurity level within the semiconductor band gap close to valence band; covalent 

bonding around each acceptor atom is deficient in an electron  electron from valence band 

can be exited to this hole and hole in valence band is created

acceptor atoms in a sufficient concentration in the crystal  holes as major charge carrier in 

the semiconductor

electrical neutrality of extrinsic semiconductors in absence of external electric field –

electrons in conduction band and holes in valence band are connected with ionized donor 

and negatively charged acceptor atoms, respectively

high concentration of dopants  degenerate semiconductors with electrical conductivity 

similar to conducting materials



slight changes in electrical conductivity after saturation of all acceptor atoms with electrons 

from valence band up to intrinsic semiconductor conductivity turns up

temperature dependence of electrical conductivity for p-type semiconductor (boron-doped silicon)

(copied from W.D. Callister, Jr., Materials Science and Engineering, An Introduction. Fifth Edition, John Willey & Sons, Inc., 2000)



Hall effect

displacement of moving charges in magnetic field  majority charge carrier type, its 

concentration and mobility can be determined

applied magnetic field is perpendicular to direction of charged particle motion; force on the 

particles perpendicular to both magnetic field and particle motion directions is exerted

Hall voltage is generated on specimen sides to compensate the magnetic field

x

z

y

Ix

Bz

UH
+

–

d
𝑈𝐻 =

𝑅𝐻𝐼𝑥𝐵𝑧
𝑑

RH – Hall coefficient, represents reciprocal density of moving charge carriers

𝑅𝐻 = −
1

𝑛 𝑒
𝑅𝐻 =

1

𝑝 𝑒
(n-type semiconductor) (p-type semiconductor)



p-n junction

diffusion of major charge carriers across interface between n- and p-type semiconductors 

diffusion current due to gradient of charge carries concentration

ionized donors remaining in n-type part, recombination of electrons with holes forming 

negatively charged ions in p-type part  space charge region is formed close to interface, 

generated electric field Epn counteracts the diffusion current
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potential barrier (eVD)

diffusion voltage VD in space charge 

region at p-n junction



p-n junction diode

electrical resistance of p-n junction is dependent on current direction

forward bias: lower potential barrier, charge carriers are attracted to the junction  increased 

current and low electrical resistance

ECn
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- -

-
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p
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U

reverse bias: charge carriers drawn away 

from the junction  decrease in diffusion 

current, insulating character of p-n junction



Current-voltage characteristics of p-n junction

𝐼 = 𝐼𝑅 exp
𝑒𝑈

𝑘𝑇
− 1

IR – residual current, U > 0 in forward bias, U < 0 in reverse bias

breakdown at high reverse bias voltage, large numbers of charge carriers are generated

(Zener diode with heavy doping of p-n junction: very thin space charge region, tunnelling of electrons from 

valence band of p-type part to conduction band of n-type part at relatively low breakdown voltage 

voltage stabilization in circuits)

current-voltage characteristics of p-n junction current rectification by p-n junction



Interaction of p-n junction with electromagnetic radiation

electron excitation from valence to conduction band due to interaction with photon (h > Eg)

Photoconductivity

increase in electrical conductivity of solid due to absorption of electromagnetic radiation

irradiation of p-n junction in reverse bias  generation of electrons and holes resulting in 

current increase in electrical circuit

photodiode: conversion of electromagnetic radiation into electric current, light detection

Photovoltaic effect

voltage generation in solid exposed to electromagnetic irradiation due to charge separation

separation of electrons and holes across p-n junction yields forward (photo)voltage between 

terminals of irradiated diode; electrons pass through the circuit  energy of radiation is 

transformed into electrical energy

silicon photovoltaic panel



p-n junction as light source

electroluminescence – photon production due to radiative recombination of electrons and 

holes (h ~ Eg)

Light emitting diodes: diode in forward bias, recombination of electrons and holes at p-n 

junction

p-AlGaAs

active AlGaAs layer

n-AlGaAs

n-GaAs substrate

+

-

semiconductor wavelength

(nm)

efficiency

(%)

power

(lm W-1)

GaAs0.6P0.4 650 0,2 0,15

GaAs0.35P0.65:N 630 0,7 1

GaAs0.14P0.86:N 585 0,2 1

GaP:N 565 0,4 2,5

GaP:Zn-O 700 2 0,40

AlGaAs 650 4 – 16 2 – 8

AlInGaP 620 6 20

AlInGaP 585 5 20

AlInGaP 570 1 6

SiC 470 0,02 0,04

GaN 450 2 0,6

structure of AlGaAs LED



Combination of p-n junctions: transistor

very thin base part sandwiched between emitter and collector parts with other type of 

conductivity (p-n-p or n-n-n configuration)

most of charge carriers from emitted pass through

the base into collector, electric current between base

and collector (p-n junction in reverse bias) is increased

 output voltage amplification

MOSFET (metal-oxide-semiconductor field-effect-transistor)

small islands of one type semiconductor (connected 

with narrow channel) within substrate of other type 

semiconductor

flow of charge carriers from source to drain is controlled 

by electric field on gate connected over thin insulating 

oxide layer

small alteration in the field at the gate results in large 

variation in current between source and drain 

amplification of source signal; much smaller gate 

current compared to base current in junction transistor



Dielectrics

valence band completely filled with electrons

empty conduction band, wide bandgap

electrons cannot be excited into conduction band

no free motion of electrons through the solid, negligible

electrical conductivity  insulators

applied electric field  change in charge distribution (polarization)

Electrical insulators

perfect insulator – absence of electrical conductivity; real insulators contain slight amount of 

mobile charge carriers

strong external electric field (> 106 V cm-1)  breakdown (sudden increase in electrical 

current) 

(tearing bound electrons away from atoms and subsequent collisions of accelerated electrons with other 

atoms  avalanche breakdown, formation of conductive paths, disruptive discharge  permanent 

physical changes in the solid)

dielectric strength 𝐸𝑏𝑟 = 𝑈𝑏𝑟/𝑑 (Ubr – breakdown voltage, d – specimen thickness)

All insulators are dielectrics but not every dielectric is insulator.

conduction

band

valence

band

Eg > 3 eV
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Electric polarization

interaction of dielectric with applied electric field  change in charge distribution within the 

dielectric

charged particles in atoms (protons, electrons)  displacement of electron cloud center 

relative to nucleus in applied electric field, electric dipole is created

electric dipole = point charges

separated by a distance 𝑅

dipole moment

 𝑝 = 𝑞𝑟1 − 𝑞𝑟2 = 𝑞 𝑟1 − 𝑟2 = 𝑞𝑅

+q

-q

0

𝑟1

𝑟2

𝑅

non-polar dielectric = dielectric without permanent 

dipoles

polar molecules and groups:   𝑝 ≠ 0 in absence of 

external electric field, random orientation

O

HH
 𝑝

molecule of water

dipole moment

p = 6,110-30 C m



Macroscopic polarization

dipole moments are aligned with an external electric field

total dipole moment (density of electric dipole moments, polarization):

electric displacement field 𝐷 = 𝜀𝐸 = 𝜀0𝐸 +  𝑃 [C m-2]

linear dielectrics (isotropic, relatively weak electric field 𝐸):    𝑃 = 𝜀0𝜅𝐸 = 𝜀0(𝜀𝑟 − 1)𝐸

 – permittivity; 0 = 8,8510-12 F m-1 – vacuum permittivity,  - electric susceptibility

relative permittivity 𝜀𝑟 = 1 + 𝜅 = 𝜀/𝜀0 > 1

charging of capacitor plates in vacuum

dipole arrangement in a 

non-polarized dielectric

increase in charge density resulting 

from polarization of a dielectric

electric field in dielectric decreases, capacitance of the capacitor increases (𝐶 = 𝜀𝐴/𝑙)

 𝑃 =
 𝑝𝑖
𝑑𝑉



Types of polarization

solid with identical elementary dipoles  𝑝 induced by local electric field 𝐸𝑙𝑜𝑐

 𝑝 = 𝛼 𝐸𝑙𝑜𝑐  - polarizability

polarization  𝑃 = 𝑁  𝑝 , 𝑁 = number of dipoles in a unit volume

Electronic polarization

distortion of atomic electron cloud by electric 

field, found in all dielectrics, very fast response 

to applied electric field

Ionic polarization

relative displacement of charged ions in 

response to electric field, increase in net 

dipole moment, found in ionic crystals

Orientation polarization

found in substances with permanent dipole 

moments, alignment of permanent dipoles 

parallel to applied electric field, rather restricted 

in solids

total polarization  𝑃 = 𝑃𝑒 + 𝑃𝑖 + 𝑃𝑜



Polarization in alternating electric filed

polarization is dependent on externally applied electric field:   𝑃 = 𝜀𝑟 − 1 𝜀0𝐸

certain time is necessary for dipole alignment in applied electric field (depends on type of 

polarization)

alternating electric field  there is minimum reorientation time for each polarization type 

(reciprocal reorientation time = relaxation frequency)

dipole orientation in alternating 

electric field

variation of relative permittivity with frequency 

of alternating electric field

microwave 

region

infrared

region

UV region

dipole cannot keep shifting orientation 

direction when frequency of alternating 

field exceeds the relaxation frequency



Ferroelectrics

dielectrics with spontaneous polarization within a certain temperature range, 𝑃𝑠 ≠ 0 at 𝐸 = 0

domain structure – small regions with parallel alignment of dipole moments; ferroelectric 

domains with dipole moments parallel to applied electric field increase in size to the 

detriment of other ones  increasing electric field results in alignment of all dipole moments

𝑃𝑠 parallel to 𝐸

spontaneous polarization can be removed by coercive electric field (EC) and reversed by 

suitably strong electric field applied in opposite direction  hysteresis loop

change in total polarization of ferroelectric 

solid with applied electric field

change in domain structure during 

polarization of ferroelectric solid

0 EEc-Ec

-PS

PS
P



barium titanate (BaTiO3): permanent dipole moment in unit cell caused by relative 

displacement of O2- and Ti4+ ions from their symmetrical positions in cubic perovskite 

structure at T < 120 °C (ferroelectric Curie temperature TC)

rearrangement to regular cubic structure at T > TC , loss of ferroelectric properties,

paraelectric behavior

(copied from W.D. Callister, Jr., Materials Science and Engineering, An Introduction. 7th Edition, 

John Willey & Sons, Inc., 2007)



(copied from z D.R. Askeland, P.P. Phulé, The Science and Engineering of Materials (4th Edition). Thomson Brooks/Cole 2003)

ferroelectric phases of BaTiO3 and orientation of spontaneous polarization vector 𝑃𝑠

Note: antiferroelectrics – the same relative displacement of adjacent atoms from their 

symmetrical positions but in opposite direction; oppositely oriented dipole moments cancel 

each other, total polarization is zero (for example, PbZrO3, NaNbO3)



Piezoelectrics

piezoelectric effect: polarization change in response to applied mechanical stress  variation 

of surface charge density upon crystal faces caused by change in dipole density in the bulk

Note: displacement of ions in crystal lattice by external electric field  strain in direction of 

the electric field = electrostriction

piezoelectric effect only in structures without a center of symmetry (20 non-centrosymmetric 

crystal classes: 1, 2,𝑚, 222,𝑚𝑚2, 4,  4, 422, 4𝑚𝑚,  42𝑚, 3, 32, 3𝑚, 6,  6, 622, 6𝑚𝑚,  62𝑚, 23,  43𝑚)

- +

+ -
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-
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

𝑝1 + 𝑝2 = 0 𝑝1 + 𝑝2 = 0
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+ -

- -
𝑝1

𝑝2

++- -

-+

𝑝1

𝑝2



𝑝1 + 𝑝2 ≠ 0 𝑝1 + 𝑝2 ≠ 0

contribution of ionic dipole moments to overall polarization after applying mechanical stress in 

centrosymmetric and non-centrosymmetric crystal structures



structure of -SiO2

(crystal class 32)

𝑃 = 𝑑𝜏 𝑑 – piezoelectric coefficient (third-order tensor)

All ferroelectrics exhibit piezoelectric effect. 

Piezoelectric effect can also be exhibited by some 

crystals which are not ferroelectric.

piezoelectrics: BaTiO3, PbTiO3, PbZrO3, Pb(Zr1-xTix)O3 (PZT), LiNbO3, KH2PO4 (KDP),

SiO2 (quartz), ZnO, … 

Pyroelectrics

crystals with temperature dependent spontaneous polarization – shifting of positively and 

negatively charged ions in crystal lattice results in changing of polarization and surface charge 

density

all pyroelectrics are piezoelectric (10 polar crystal classes: 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm)

∆  𝑃 = 𝜋 ∆𝑇  - pyroelectric coefficient [C m-2 K-1]

pyroelectrics: BaTiO3, LiNbO3, LiTaO3



Ionic conductors

solid electrolytes – compounds with ionic bonding, solid solutions

motion of ions through a solid (diffusion) in applied electric field  ionic conductivity

total electric conductivity includes both electronic and ionic conductivity

materials with high ionic conductivity at common temperatures  superionic conductors     

( = 10-1 – 102 -1 m-1)

properties:

• structure enabling motion of ions (structure with cation or anion deficiency – vacancies, 

empty interstitial positions)

• low energy barriers for ion jumping between free positions in the structure (~ 0,1 eV)

• continuous paths for ion motion

cation conductors:

Na+ Na2O11Al2O3 (-alumina), Na1+xZr2SixP3-xO12 (0<x<3, NASICON)

Ag+ AgI, RbAg4I5
Li+ LiCoO2, LiMnO2, Li10GeP2S12, Li9.54Si1.74P1.44S11.7Cl0.3, Li7La3Zr2O12 (c-LLZO)

H+ Zr(HPO4)2nH2O

anion conductors:

F- PbF2, CaF2, LaF3

O2- YxZr1-xO2-x/2 (YSZ), CaxZr1-xO2-x, some perovskites (Ba2In2O5, La1-xCaxMnO3-y)
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Magnetic properties of solids

interaction between solid and magnetic field  internal magnetic field in the solid is 

generated

magnetization (M) – magnetic moment in a unit volume of solid inserted into externally 

applied magnetic field with strength of H (sum of magnetic dipole moments associated with 

individual electrons)

magnetic induction or magnetic flux density (B) – force acting on moving electric charge 

(magnitude of internal magnetic field strength within solid exposed to external magnetic field)

𝐵 = 𝜇𝐻 = 𝜇0𝐻 + 𝜇0𝑀

permeability of vacuum 0 = 1,25710-6 H m-1

(𝜀0𝜇0 = 1/𝑐2)

relative permeability 𝜇𝑟 = 𝜇/𝜇0

magnetic susceptibility 𝜒 = 𝜇𝑟 − 1

𝑀 = 𝜒𝐻

units:

magnetic field strength H = A m-1 (Henry)

magnetic induction T = kg s-2 A-1 (Tesla)



-

Elementary magnetic moments

each solid contains moving charged particles  magnetic dipole moments are generated

- spin of electrons (spin magnetic moments)

- orbital motion of electrons around nucleus (orbital magnetic moments)

- spin of nuclei (spin magnetic moment of nucleus << electron magnetic moments)

Spin magnetic moment of electron

𝜇𝑠 = 2 𝜇𝐵 𝑠(𝑠 + 1) 1/2 s – spin quantum number, s = 1/2

𝜇𝐵 =
𝑒ℏ

2𝑚𝑒
= 9.273 ∙ 10−24 J T−1 Bohr magneton

spin angular momentum

quantized values, (2s + 1) possible orientations in magnetic field

 2 orientations of spin angular momentum  𝑆 with norm of

 𝑆 = ℏ 𝑠(𝑠 + 1) 1/2

two values of secondary spin quantum number 𝑚𝑠 = ±  1 2

(spin z-projection 𝑠𝑧 = ℏ 𝑚𝑠)

𝐻

+
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1
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Orbital magnetic moment of electron

-

+

𝐼

 𝐴

 𝜇 = 𝐼  𝐴

current loop generating magnetic field 

with magnetic moment along its axis of 

rotation

vector of loop area  𝐴 is oriented 

according to current direction

current 𝐼 = 𝑒/𝜏 [C s-1 = A s s-1 = A]

orbital magnetic moment

𝜇𝑒 =
𝑒

2𝑚𝑒
𝐿

𝐿 - angular momentum for the electron orbital motion, quantized values 𝐿 = ℏ 𝑙(𝑙 + 1) 1/2

(𝑙 – orbital quantum number)

𝜇𝑒 =
𝑒ℏ

2𝑚𝑒
𝑙(𝑙 + 1) 1/2 𝑒ℏ

2𝑚𝑒
= 𝜇𝐵



vector 𝐿 has (2𝑙 + 1) possible orientation in magnetic field

n = 1 (s) l = 0    ml = 0, spherical symmetry of s orbital

n = 2 (p) l = 1    3 orientations (ml = -1, 0, 1   px, py, pz)

n = 3 (d) l = 2    5 orientations (ml = -2, -1, 0, 1, 2   (dxy, dxz, dyz, dx2-y2, dz2)

atom in magnetic field oriented along the z-axis

- magnetic field induces precession of vector 𝐿
- mean value of 𝐿𝑥 and 𝐿𝑦 components is zero, component 𝐿𝑧 = 𝑚𝑙ℏ

- precession angles between vector 𝐿 and z-axis are quantized

cos 𝛼 =
𝑚𝑙

𝑙(𝑙 + 1) 1/2
𝐻 z

−2ℏ

−ℏ

2ℏ

ℏ

0

𝑚𝑙 = 2

𝑚𝑙 = −2

𝑚𝑙 = 1

𝑚𝑙 = −1

𝑚𝑙 = 0

𝐿𝑧

𝐿𝐿 = ℏ 𝑙(𝑙 + 1) 1/2

quantization of orbital angular 

momentum 𝐿 (𝑙 = 2)



Total magnetic moment of electron

interaction of spin angular momentum and orbital angular momentum

 total angular momentum of electron  𝐽 = 𝐿 +  𝑆

 𝐽 = ℏ 𝑗(𝑗 + 1) 1/2 𝑗 – total angular momentum quantum number of electron

𝑗 = 𝑙 + 𝑠, 𝑙 + 𝑠 − 1,… , 𝑙 − 𝑠 (for example, 𝑙 = 1, 𝑠 = 1/2, 𝑗 = 3/2 a 1/2)

Multi-electron atom

total orbital quantum number and total spin quantum number 𝐿 =  𝑚𝑙, 𝑆 =  𝑚𝑠

spin-orbital interaction (LS coupling)  𝐽 = 𝐿 + 𝑆, 𝐿 + 𝑆 − 1,… , 𝐿 − 𝑆 (total angular 

momentum quantum number)

term symbols (spectroscopic state of atom)  (2S+1)LJ

spin multiplicity (2𝑆 + 1) = number of possible states of 𝐽 for given 𝐿 and 𝑆 (multiplet)

Example: term of iron atom in a ground state

Fe: 1s2 2s2 2p6 3s2 3p6 3d6 4s2 [Ar] 3d6 4s2

all orbitals excepting the 3d one are fully occupied, 3d orbital contains 6 electrons

𝑆 =
1

2
+

1

2
+

1

2
+

1

2
+

1

2
−

1

2
= 2  2𝑆 + 1 = 5 𝐽 = 4, 3, 2, 1, 0

𝐿 = 2 + 1 + 0 − 1 − 2 + 2 = 2  spectroscopic symbol D  5D4

3d shell over half full  maximum 𝐽 value 𝐽 = 𝐿 + 𝑆 = 4

(shell up to half full  minimum 𝐽 value 𝐽 = 𝐿 − 𝑆

shell just half full  𝐿 = 0, 𝐽 = 𝑆)

}



total magnetic moment of atom = sum of all orbital and spin magnetic moments (vectors)

𝜇𝑎𝑡 = 𝑔 𝜇𝐵 𝐽(𝐽 + 1) 1/2

𝑔 – Landé factor (normalization of vectors 𝜇𝑒 and 𝜇𝑠 coupling) given by

𝑔 𝐿, 𝑆, 𝐽 = 1 +
𝐽 𝐽 + 1 + 𝑆 𝑆 + 1 − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)

spin magnetic moments within the atom cancel each other  only orbital magnetic moments 

are effective:  𝑆 = 0, 𝐽 = 𝐿, 𝑔 = 1

orbital magnetic moments within the atom or ion cancel each other  only spin magnetic 

moments are effective:  𝐿 = 0, 𝐽 = 𝑆, 𝑔 = 2

coupling of electron magnetic moments within solid determines its magnetic behavior

5 types of magnetism: 

diamagnetism

paramagnetism

ferromagnetism

antiferromagnetism

ferrimagnetism



Diamagnetism

non-permanent, very weak form of magnetism present in all substances

induced by change in orbital motion of electrons in an external magnetic field

diamagnetic materials: cancellation of all orbital and all spin magnetic moments of electrons 

resulting in zero magnetic dipole of atoms, optimum energy of electron motion states

external magnetic field induces precession of orbital angular momentum around the external 

field direction (Larmor precession)  additional current loop is created

𝐻

𝐿

r

angular frequency of Larmor precession

𝜔𝐿 =
𝑒𝐻𝜇0

2𝑚𝑒

𝜒 = −
𝑁𝑒2𝑟2𝜇0

6𝑚𝑒
< 0

magnetic susceptibility of diamagnetic solid 

consisting of N atoms

(dependent only on radius of electron motion path, 

independent on temperature)



application of external magnetic field increases energy of electrons and induces magnetic 

moment oriented in opposite direction

 diamagnetic materials repel the external field

negative and very slight magnetic susceptibility 𝜒 ~ from -10-6 to -10-4

Examples of diamagnetic substances:

H2 molecules, inert gases

metals (Cu, Au)

covalent crystals (pairing of valence electrons – diamond, Si, Ge, SiO2)

ionic crystals (electron transfer to acquire inert gas configuration – NaCl) 



Paramagnetism

atoms with permanent magnetic moment (unpaired electrons  incomplete cancellation of 

electron spin and/or orbital magnetic moments)

random orientation of magnetic moments 𝜇𝑒 and 𝜇𝑠  𝑀 = 0 at 𝐻 = 0

magnetic moments of unpaired electrons are oriented parallel to external magnetic field 

paramagnetic solid attracts the external field, 𝜒 > 0 (10-5 – 10-4) 

𝜒 =
𝑁𝑔2𝜇𝐵

2 𝐽 𝐽 + 1

3𝑘𝑇
=

𝐶

𝑇

𝐶 =
𝑁𝑔2𝜇𝐵

2 𝐽 𝐽 + 1

3𝑘
(Curie constant)

atoms in solid are not independent on each 

other  correction (𝜃 – Weiss constant)

𝜒 =
𝐶

𝑇 − 𝜃

0 T



Examples of paramagnetic solids:

Al, Cr, Ti, Zr



Pauli paramagnetism of free electrons

a strong paramagnetism in metals containing unpaired electrons could be expected – not 

observed in general (e.g., alkaline metals show only weak and temperature independent 

paramagnetism)

electrons in metal occupy all energy states up to Fermi level EF

spin-paired electrons are allocated to each energy state  equal numbers of spin-up and 

spin-down electrons (metal would be diamagnetic)

slight energy separation in magnetic field  electrons opposed to the field have higher 

energy than those parallel to the field (difference of 𝜇𝐻) 

only electrons over Fermi level can reorient their spin in magnetic field

EF

G(E)

E

𝐻 = 0

spin orientation

EF

G(E)

E

𝐻 > 0

parallel 

to field

opposed 

to field
𝜇𝐻

𝜇𝐻

EF

G(E)

E

𝐻 > 0

2𝜇𝐻



Ferromagnetism

cancellation of orbital magnetic moments, alignment of spin magnetic moments in adjacent 

atoms due to electron interactions (based on electrostatic repulsion)

observed only in solids (domain structure), ordered crystal structure is not necessary

strong magnetization even in a weak external magnetic field persist after removing from the 

field, high magnetic susceptibility (𝜒 ≫ 1) – dependent on external magnetic field strength 

and temperature

𝜒 =
𝐶

𝑇 − 𝑇𝐶

TC – Curie temperature

alignment of spin magnetic moments in 

domains is disrupted at T > TC
 paramagnetic behavior

0 T

M

Examples of ferromagnetic solids (TC):

Fe (1043 K) Gd (293 K)

Co (1388 K) Cu2MnAl (603 K)

Ni (627 K) CrO2 (387 K) 



quantum mechanical exchange interactions between bonding electrons in adjacent atoms in 

a magnetic domain  alignment of spin magnetic moments of atoms  spontaneous 

magnetization in the domain (vector 𝑀𝑠); electrostatic energy decreases when all electrons 

have parallel spins

interactions are characterized by exchange integral JV, which is dependent on ratio of 

interatomic distance (lattice parameter) and radius of valence (3d) shell a/r

𝑀𝑠

1

0

2 3 4

Mn
5 6

Fe

Co

Ni

Gd

a/r

JV

a/r > 3  JV > 0 parallel alignment of spin magnetic moments (ferromagnetic behavior)

a/r < 3  JV < 0 antiparallel alignment (antiferromagnetic behavior)

a/r ~ 3  JV ~ 0 paramagnetic behavior



Domain structure and magnetization

domains with various orientation and magnitude of magnetic moment 𝑀𝑠, various size of 

domains (10-3 – 103 mm)

gradual change in magnetic dipole orientations at domain boundaries – domain (Bloch) walls

(approximately 300 times wider than lattice parameter), can be shifted within solid

H = 0

H1 > 0

H2 > H1

micrograph of iron single crystal showing 

magnetic domains and their change in shape 

when external magnetic field was applied

(copied form W.D. Callister, Jr., Materials Science 

and Engineering, An Introduction. 7th Edition, John 
Willey & Sons, Inc., 2007)

formation of aligned magnetic dipoles into more 

closure domains is energetically advantageous



Magnetization curve and hysteresis loop

initial solid without magnetization: T < TC, H = 0, zero magnetization (randomly oriented 

magnetic dipoles cancel each other)

domains with magnetic dipole alignment parallel to external magnetic field (H > 0) increase 

their size, gradual rearrangement of domains with increasing external magnetic field strength

all domains oriented parallel to the external field  maximum (saturated) magnetization

external field strength reduction by reversal of field direction: residual magnetization 

(remanence) at H = 0, external magnetic field in reverse direction to the original field 

(coercivity) has to be applied for remanence removal; increasing in field strength  reverse 

saturated magnetization; repeated reversal of the external magnetic field  hysteresis loop



Effect of anisotropy

magnetization is more easy in certain crystallographic directions – (for example, the 

direction of easy magnetization for -Fe single crystal is [100]; achieving saturation 

magnetization is most difficult in the [111] direction)

magnetostriction – magnetic materials change their dimensions or shape during 

magnetization; applied external magnetic field changes magnetostrictive strain due to 

domain walls shift and rearrangement of the materials structure

magnetization curves measured in various crystallographic directions for iron and nickel single crystals

(copied from W.D. Callister, Jr., Materials Science and Engineering, An Introduction. 7th Edition, John Willey & 
Sons, Inc., 2007)



Antiferromagnetism

magnetic moment coupling between adjacent atoms results in antiparallel alignment, their 

spin magnetic moments are in exactly opposite orientation  complete cancellation, 

magnetic susceptibility  ~ 10-5 – 10-3, comparable with paramagnetic materials

superexchange interaction: direct interaction 

between Mn2+ cations in Mn2+– O2-– Mn2+ lines is 

not possible due to separation by non-magnetic O2-

anions  interaction through oxygen 2p electrons

Mn2+: [Ar] 3d5 4s0, O2-: [He] 2s2 2p6

Mn2+ 3d5 Mn2+ 3d5

O2- 2p6

antiferromagnetic ordering is stable up to temperature limit (Néel temperature TN)
T > TN  paramagnetic behavior

Examples of antiferromagnetic solids (TN):   MnO (116 K), CoO (291 K), NiO (525)



Ferrimagnetism

magnetic moment coupling between adjacent atoms results in antiparallel alignment but their 

spin magnetic moments are not cancelled completely (two subsets of magnetic moments 

exist, only one has antiparallel spin moments arrangement)  permanent magnetization

similar macroscopic magnetic characteristics like ferromagnetic materials, other source of net 

magnetic moments

Example: Fe3O4 (magnetite) with inverse spinel crystal structure

parallel orientation of spin magnetic moments of Fe3+ cations in tetrahedral sites; spin magnetic moments 

of Fe2+ and Fe3+ cations have also parallel orientation but in opposite direction to Fe3+ cations in tetrahedral 

sites; spin magnetic moment of Fe3+ cations in tetrahedral and octahedral sites cancel each other  only

Fe2+ cations contribute to magnetization



(copied from W.D. Callister, Jr., Materials Science and Engineering, An Introduction, Fifth Edition, John Willey & Sons, Inc., 

2000 and D.R. Askeland, P.P. Phulé, The Science and Engineering of Materials (4th Edition). Thomson Brooks/Cole 2003)

saturation magnetization of iron and magnetite 

dependent on temperature

comparison of magnetic behavior of various 

materials in external magnetic field



Soft and hard magnetic materials

shape of hysteresis loop shows magnetic behavior of materials

soft magnetic materials: small area of narrow hysteresis loop (low hysteresis energy loss), 

high initial permeability, low coercivity (< 100 A m-1)

hard magnetic materials (permanent magnets): large area of hysteresis loop, high 

remanence, coercivity (> 5∙104 A m-1), saturation magnetization, and resistance to 

demagnetization



Energy product

area within a loop  magnetic energy loss per unit volume of solid per magnetization-

demagnetization cycle; remanence, coercivity, and saturation magnetization determine 

properties and application of magnetic materials

energy product = the largest rectangle area constructed within the second quadrant of the 

hysteresis loop 𝐵 × 𝐻



material commercial 

name

remanence

μoMr [T]

coercivity

μoHc [T]

energy product

(BH)max

[kJ m-3]

Curie 

temperature 

[°C]

Fe-Co Co-steel 1.07 0.02 6 887

Fe-Co-Al-Ni Alnico-5 1.05 0.06 44 880

BaFe12O19 Ferrite 0.42 0.31 34 469

SmCo5 Sm-Co 0.87 0.80 144 723

Nd2Fe14B Nd-Fe-B 1.23 1.21 290 – 445 312

Properties of some permanent magnets



Soft magnetic materials and their applications

 iron, soft magnetic alloys of iron with other elements (e.g., Ni, Co, Mo, V, Si)

- cores subjected  to alternating magnetic fields (transformers, electric motors, etc.)

 soft magnetic ferrites (ferromagnetic mixed oxides of iron and other elements)

spinels – Fe3O4, MFe2O4 (M = Mn, Ni, Zn, Mg, …) – transformers, antennas, recording 

heads

garnets – iron garnets M3Fe5O12 (M = Y, rare earth elements) – microwave applications,

e.g., filters, transmitters, transducers (yttrium iron garnet, YIG)

Materials for data storage

materials with rectangular hysteresis loop, low remanence, saturation magnetization, and 

coercivity  oriented magnetization of small area (domain) in a given direction persisting 

after removal of external magnetic field

- Fe, -Fe2O3, CrO2, barium ferrite, (Mg,Mn)Fe2O4, (Ni,Zn)Fe2O4, etc.

microstructure of magnetic storage disc – small needle-shaped

-Fe2O3 crystals embedded in an epoxy resin are oriented 
parallel to recording head motion



recording information on magnetic storage medium: 

magnetization of domains by magnetic field 

generated by electric current in recording head / 

reading: magnetized domains induce electric current 
in recording head HRTEM image showing microstructure of 

polycrystalline Co-Cr-Pt alloy thin film used 

as high-density magnetic storage medium; 

arrows in grains represent direction of easy 
magnetization

(copied from W.D. Callister, Jr., Materials Science and 

Engineering, An Introduction. 7th Edition, John Willey 

& Sons, Inc., 2007)



Superconductors

conducting materials (metals) – decrease in electrical resistivity with decreasing temperature

superconductors – sudden drop in resistivity al low temperatures (R  0)

discovery of superconductivity in mercury at temperatures 

under 4.2 K (Kammerling-Onnes, 1911)

superconductivity disappears at T > TC
(superconducting transition or critical temperature)

in external magnetic field – superconductivity up to 

critical magnetic induction (BC)

𝐵𝐶 𝑇 = 𝐵𝐶 0 − 1 −
𝑇

𝑇𝐶

2

(BC(0) – extrapolation of BC at T = 0 K)

electric current induced by magnetic field  critical 

current density JC (~ 105 A cm-2) 

type I superconductors: metals, TC < 10 K,

BC ~ 10-4 – 10-2 T

type II superconductors: alloys and intermetallic 

compounds, TC < 20 K, BC ~ 101 T

high-temperature superconductor: ceramic materials

(oxides), TC ~ 100 K



Meissner effect

solid in superconducting state is completely diamagnetic and repel the external magnetic 

field (B = 0 within the solid), complete magnetic flux penetration takes place at B = BC

superconducting body excludes magnetic field 

up to the body becomes normally conductive 
at B > BC

type I superconductors

magnetic field penetrates only very thin surface layer 

(thickness of ~10-7 m), transition between 
superconducting and normal state at B = BC

type II superconductors

gradual transition from superconducting to normal 

state, occurs between lower critical an upper 

critical magnetic field strengths; solid is 

diamagnetic at B < BC1, gradual penetration of 

magnetic field to solid between BC1 and BC2 (lamellar 

structure of solid consisting of superconducting and 

areas and those with normal conduction – vortex 

state)



Cooper pairs

BCS theory (Bardeen, Cooper, Schriefer, 1957) explained superconductivity by interactions 

between pairs of conducting electrons (Cooper pairs)

electron-phonon interactions (phonon exchange between two electrons) at T < TC  new 

energy states of electrons 𝑙1 = 𝑘1 −  𝑞 and 𝑙2 = 𝑘2 +  𝑞, electrons are attracted to each other

the strongest interaction between electrons with opposite spins and wave vectors  Cooper 

pair with total spin of zero (composite boson with long wavelength passing free through a 

solid)

++ + + +

+ + + + +

--

simplified model of attractive interaction 

between electron in superconductors: slight 

local distortion in cation ordering caused by 

electron passing through a solid creates 

region of enhanced positive charge; another 

electron can be attracted to this region to 

form Cooper pair

paired states of electron with energy 

lower than Fermi level  energy gap

2∆ = 3.53 𝑘𝑇𝐶

one Cooper pair is related to about 106

conducting electrons (T = 0 K)

Cooper pairs

(occupied stated)

excited electrons

EF 2



High-temperature superconductors

Ceramic (oxide) materials, TC > 30 K, their superconductivity is not explained by BCS theory

La5-xBaxCu3O5(3-y) (x = 1 nebo 0,75, y > 0)    TC = 30 K

1-2-3 compounds: YBa2Cu3O7-x (0 < x < 0,5) YBCO  TC = 93 K

oxides Bi-Sr-Ca-Cu-O (110 K), Tl-Ba-Ca-Cu-O (125 K), Hg-Ba-Ca-Cu-O (153 K)

YBCO unit cell and ordering of oxygen atoms; oxygen content in the YBCO structure affects 

superconducting behavior

(copied from http://www.aldebaran.cz/bulletin/2004_36_hts.html)

plane (CuO2)∞

chain (CuO3)∞

superconducting 

area of the 

YBCO structure



Optical properties of solids

response of solid exposed to electromagnetic radiation, namely in the visible region

wave-particle duality

synchronized oscillation of continuous electric 

and magnetic fields, transverse wave with 

electric and magnetic vectors (perpendicular to 

each other) oscillating perpendicular to direction 

of wave and energy propagation

stream of discrete particles (photons) with 

energy of 𝐸 = ℎ𝜈 = ℎ𝑐/𝜆



Maxwell’s equations  propagation of electromagnetic wave within a solid

𝑟𝑜𝑡 𝐸 = −𝜇0𝜇𝑟

𝜕𝐻

𝜕𝑡

𝑟𝑜𝑡 𝐻 =
𝜕𝐷

𝜕𝑡
+  𝑗

𝑑𝑖𝑣 𝐷 = 𝜌

𝑑𝑖𝑣 𝐻 = 0

Note: divergence and rotation operators

divergence of vector match a vector field  𝑣(𝑥, 𝑦, 𝑧) with a scalar field 𝑠(𝑥, 𝑦, 𝑧) – associates a scalar with 

every point of a vector field (giving a quantity of vector’s field source at each point)

𝑑𝑖𝑣  𝑣 = 𝛻 ∙  𝑣 =
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧

rotation (or curl) of vector match a vector field  𝑣(𝑥, 𝑦, 𝑧) with another vector field 𝑢(𝑥, 𝑦, 𝑧)

𝑟𝑜𝑡  𝑣 = 𝛻 ×  𝑣 =
𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧
 𝑖 +

𝜕𝑣𝑥

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑥
 𝑗 +

𝜕𝑣𝑦

𝜕𝑥
−

𝜕𝑣𝑥

𝜕𝑦
𝑘

( 𝑗 - current density, 𝜌 - free charge density)

Maxwell’s equations can be used when wavelength of electromagnetic wave is much longer 
compared to dimensions of non-homogeneities in solid (visible light λ~10-7 m, lattice 

parameters ~10-9 m) 

(Faraday’s law of induction)

(Ampére’s circuital law)

(Gauss’s law)

(Gauss’s law for magnetism)



Material relations (parameters of solid, in which electromagnetic wave propagates)

electromagnetic field of low intensity (non-linear response cannot be induced) and 

nonmagnetic, homogeneous, and isotropic material are expected

 𝜇𝑟 = 1, 𝜌 = 0, 𝐷 = 𝜀0𝜀𝑟𝐸,  𝑗 = 𝜎𝐸

permittivity (), permeability (), and conductivity () are scalars (in general, they are tensors 

of second order)

𝑟𝑜𝑡 𝐸 = −𝜇0

𝜕𝐻

𝜕𝑡

𝑟𝑜𝑡 𝐻 = 𝜀0𝜀𝑟

𝜕𝐸

𝜕𝑡
+ 𝜎𝐸

𝑑𝑖𝑣 𝐸 = 0

𝑑𝑖𝑣 𝐻 = 0

for electric component of electromagnetic field (magnetic component need not be considered 

and 𝐻 was excluded) it can be written

𝑟𝑜𝑡 𝑟𝑜𝑡 𝐸 = −𝜇0

𝜕

𝜕𝑡
𝜀0𝜀𝑟

𝜕𝐸

𝜕𝑡
+ 𝜎𝐸



wave equation for electric field intensity is obtained after rearrangement

𝜕2𝐸

𝜕𝑥2
+

𝜕2𝐸

𝜕𝑦2
+

𝜕2𝐸

𝜕𝑧2
− 𝜎𝜇0

𝜕𝐸

𝜕𝑡
− 𝜇0𝜀0𝜀𝑟

𝜕2𝐸

𝜕𝑡2
= 0

solution in the form of harmonic planar wave

𝐸∗  𝑟, 𝑡 = 𝐸0exp 𝑖𝜔 𝑡 −
 𝑠  𝑟

𝑣

( - angular frequency,  𝑠 - unit vector parallel to wave propagation direction 𝐸0 - amplitude, 

v - phase velocity,  - phase offset)

𝐸∗  𝑟, 𝑡 - complex quantity, only real part is meaningful

in a non-conducting medium ( = 0)

1

𝑣2
= 𝜇0𝜀0𝜀𝑟

in vacuum (𝜀𝑟 = 1)  𝑣 = 𝑐 = 1/ 𝜀0𝜇0
1/2

refractive index (in non-conducting solids)  𝑛 = 𝑐/𝑣 , 𝑛2 = 𝜀𝑟

 𝐸  𝑟, 𝑡 = 𝐸0 cos(𝑘 ∙  𝑟 − 𝜔𝑡 + 𝜑)



conducting solid (  0) absorbs electromagnetic radiation, for solution of wave equation in 

the form of planar wave the phase velocity has to fulfil the following condition

1

𝑣2
= 𝜇0𝜀0𝜀𝑟 − 𝑖

𝜇0𝜎

𝜔

complex refractive index n* and complex permittivity * has to be defined

𝑛∗ = 𝑛 − 𝑖𝓀 ,   𝑛∗ = 𝑐/𝑣

and then

𝜀𝑟 = 𝑛2 − 𝓀2, 
𝜎

𝜀0𝜔
= 2𝑛𝓀

(𝓀 – mass attenuation coefficient)

complex relative permittivity

𝜀∗ = 𝜀1 − 𝑖𝜀2

𝜀1 = 𝜀𝑟 = 𝑛2 − 𝓀2

𝜀2 =
𝜎

𝜀0𝜔
= 2𝑛𝓀



Refraction

wave propagation speed differs in various media

frequency remains unchanged, wavelength is 

changing (λ = 𝑣/𝜈) 

interference of waves with different wavelength 

 change in direction of wave propagation 

(transparent and non-conducting solid is 

expected)

Snell’s law

(refraction angle related to incidence 

angle – change in angle of wave 

propagation direction to surface 

normal when light enters other 

medium)

sin 𝜃1

sin 𝜃2
=

𝑛2

𝑛1
(WN – wave normal)



refractive index decreases with 

increasing radiation wavelength

 dispersion of light

Total internal reflection

refraction with refractive angle above 90° is not possible; when light enters a medium with 

lower refractive index, the radiation passes through interface only when incidence angle is 

smaller than critical angle; radiation will be completely reflected at interface for i > CA

critical angle can be calculated from

sin 𝐶𝐴 = 𝑛1/𝑛2



Light polarization

electromagnetic wave propagation: transverse oscillations related to propagation direction, 

vectors of electric and magnetic components are perpendicular to each other but they can 

turn around the direction of wave propagation

𝐸  𝑟, 𝑡 = 𝐸0 cos(𝑘 ∙  𝑟 − 𝜔𝑡 + 𝜑)

𝐵  𝑟, 𝑡 = 𝐵0 cos(𝑘 ∙  𝑟 − 𝜔𝑡 + 𝜑)

(𝐸0, 𝐵0 - amplitude of wave, 𝑘 - wave vector parallel to propagation direction,  𝑟 - position 

vector,  - angular frequency, t - time,  - phase offset)

only one component vector is needed (usually 𝐸 is chosen)

unpolarized light: in plane perpendicular to wave propagation direction (x-y plane) the 𝐸  𝑟, 𝑡
vector has a random orientation depending on time

polarized light: in x-y plane the terminal point of 𝐸  𝑟, 𝑡 vector creates a defined curve 

depending on time

x

y



Understanding polarization of waves: interference of linearly polarized waves

two linearly polarized electromagnetic waves (terminal point of 𝐸  𝑟, 𝑡 vector oscillates in 

plane along the direction of propagation) with the same frequency and wavenumber are 

polarized parallel to x and y axes and propagate in direction parallel to z axis

𝐸 𝑧, 𝑡 = 𝑥0𝐸1 cos(𝑘𝑧 − 𝜔𝑡 + 𝜑1) + 𝑦0𝐸2 cos(𝑘𝑧 − 𝜔𝑡 + 𝜑2)

(𝑥0, 𝑦0 - unit vectors parallel to x and y axes, 𝐸1, 𝐸2 - wave amplitudes, 𝜑1, 𝜑2 - phase offsets)

parametric equations of a curve, which is created by terminal point of 𝐸  𝑟, 𝑡 vector in x-y 

plane depending on time (z = 0)

𝐸𝑥 𝑡 = cos(𝜔𝑡 + 𝜑1) = 𝐸1(cos𝜔𝑡 cos𝜑1 − sin𝜔𝑡 sin 𝜑1)

𝐸𝑦 𝑡 = cos(𝜔𝑡 + 𝜑2) = 𝐸2(cos𝜔𝑡 cos𝜑2 − sin𝜔𝑡 sin 𝜑2)

final electric field intensity 𝐸 is given by vector sum of 𝐸𝑥 and 𝐸𝑦 intensities; the equations can 

be solved when

cos𝜑1 −sin𝜑1

cos𝜑2 −sin𝜑2
≠ 0

 equation of ellipse – elliptically polarized wave is created

𝐸𝑥(𝑡)

𝐸1

2

+
𝐸𝑦(𝑡)

𝐸2

2

− 2
𝐸𝑥 𝑡 𝐸𝑦 𝑡

𝐸1𝐸2
cos𝜑 = sin2𝜑

(𝐸𝑥(𝑡) ≤ 𝐸1, 𝐸𝑦(𝑡) ≤ 𝐸2, 𝜑 = 𝜑2 − 𝜑1)

x

y

Ex

Ey

2E1

2E2



Linearly polarized light

limiting case of elliptically polarized light, terminal point of vector 𝐸 oscillates in a plane, 

angle of turn in x-y plane is determined by ratio of E1 and E2 amplitudes

x

y

Ex

Ey

E1

E2



x

y

Ex

Ey

E1

E2



𝜑2 = 𝜑1

𝐸2

𝐸1
= tg𝛼

𝜑2 = 𝜑1 − 𝜋

𝐸2

𝐸1
= − tg𝛼

right-handed orientation left-handed orientation

Circularly polarized light

limiting case of elliptically polarized light, terminal point of vector 𝐸 creates a circle in x-y 

plane

x

y

Ex

Ey

E1

E2



– R

+ L 
𝐸1 = 𝐸2

𝜑2 = 𝜑1 ±
𝜋

2

𝐸𝑥(𝑡) = 𝐸1 cos(𝜔𝑡 + 𝜑1)

𝐸𝑦 𝑡 = 𝐸2 cos(𝜔𝑡 + 𝜑1 ±
𝜋

2
) = ∓𝐸2 sin(𝜔𝑡 + 𝜑1)

𝛼 = 𝜔𝑡 + 𝜑1 – right-handed orientation (R), + left-handed 

orientation (L)

(orientation of turn in reverse to direction of light 

propagation)



Polarization of light in solid

homogeneous, non-conducting, magnetically isotropic, and electrically anisotropic solid is 

expected  magnitude and direction of polarization depends on direction of electric field 

propagation

𝐷 = 𝜀0  𝜀𝑖𝑗 𝐸 i = x,y,z j = x,y,z

𝐷𝑥

𝐷𝑦

𝐷𝑧

= 𝜀0

𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧

𝜀𝑦𝑥 𝜀𝑦𝑦 𝜀𝑦𝑧

𝜀𝑧𝑥 𝜀𝑧𝑦 𝜀𝑧𝑧

𝐸𝑥

𝐸𝑦

𝐸𝑧

ij – tensor of relative permittivity (symmetric, ij = ji  6 independent components)

𝑥2

𝜀𝑥𝑥
+

𝑦2

𝜀𝑦𝑦
+

𝑧2

𝜀𝑧𝑧
= 1

ellipsoid of wave normals, in general two circular cross-sections

can be found

only one speed of electromagnetic wave propagation (v1, v2)
in direction parallel to circular cross-section normal (N1, N2)

 no more than two optic axes can be found in crystal

N2

N1



Optically isotropic solids

three equivalent crystallographic directions, perpendicular to each other (cubic crystals, 

amorphous materials)

Optically anisotropic solids

- uniaxial

two or more equivalent crystallographic directions in one plane (rhombohedral, tetragonal, 

and hexagonal crystals)

incident light is split into two rays with linear polarization perpendicular to each other; 

propagation of the first ray (ordinary – o) is described by Snell’s law, speed of propagation of 

the other one (extraordinary – e) is dependent on the angle between propagation direction 

and optic axis (variable refractive index)

speed of propagation vo > ve – positive uniaxial crystal, vo < ve – negative uniaxial crystal, 

maximum difference in direction perpendicular to optic axis

incident light parallel to optic axis is not split – no birefringence is observed

- biaxial

no equivalent crystallographic directions (orthorhombic, monoclinic, and triclinic crystals)

incident light is split into three rays, there are three refractive indexes (no, ne1, ne2) in the 

crystal



Birefringence in calcite crystal

ordinary ray – behavior like in an isotropic solid (the same speed of propagation in all 

direction, no refraction at perpendicular incidence), linear polarization alongside the plane 

perpendicular to optic axis

extraordinary ray – different speed of propagation in various directions, refraction even at 

perpendicular incidence, linear polarization parallel to plane defined by optic axis (c) and 

both rays (at 589 nm no = 1.658, ne = 1.486)

(copied from W.D. Nesse: Introduction to Mineralogy. Oxford University Press, New York 2000)



Production of polarized light

- polarization by reflection

unpolarized light with certain angle of incidence (Brewster’s angle) is reflected from the 

surface to obtain linearly polarized light – polarization is perpendicular to plane of incidence

1 1

2

n1

n2

n1 < n2
𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2 (Snell’s law)

Brewster’s angle is given by equation

𝜃1 + 𝜃2 =
𝜋

2

tg 𝜃1 =
𝑛2

𝑛1

- polarization by birefringence

Nicol prism is used (rhombohedral calcite crystal

is cut and rejoined), linearly polarized extraordinary

ray is obtained

- polarization by total internal reflection

Fresnel rhomb – circularly polarized light is obtained from linearly polarized light with incident 

angle of /4 due to phase shift of /2 between parallel and perpendicular components

absorption

o

e



Waveplate (optical retarder)

birefringent crystals with surfaces cut perpendicular to optic axis, incident linearly polarized 

light is split into two waves (parallel and perpendicular to optic axis) with different speed of 

propagation

phase shift of outgoing waves

∆𝜑 =
2𝜋

𝜆
𝑛𝑒 − 𝑛𝑜 𝑑 =

2𝜋

𝜆
Δ

(λ – light wavelength in vacuum, ne, no – refraction index of 

ordinary and extraordinary rays, d – waveplate thickness)

half-wave plate

∆ = 𝑘 +
1

2
𝜆  phase shift Δ𝜑 = 𝜋

light with linear polarization

perpendicular to incident light

is obtained

(k – positive integer)

quarter-wave plate

Δ = 𝑘 +
1

4
𝜆  phase shift Δ𝜑 =

𝜋

2

circularly polarized light is obtained



Absorption of electromagnetic radiation in solids

index of absorption is dependent on radiation wavelength

𝜅 =
𝛼𝜆

4𝜋𝑛
( -linear absorption coefficient,  - radiation wavelength in vacuum, n – refractive index)

Metals: easy excitation of electrons to higher energy states, absorption and reemission of 

photons, transparent to high-frequency radiation

Semiconductors: photons absorption due to electrons excitation from valence to conduction 

band (intrinsic semiconductors, h > Eg) or electrons excitation from (alternatively to) impurity 

levels within the band gap (extrinsic semiconductors, h < Eg)

Dielectrics: usually transparent to visible light, absorption due to presence of electron levels 

within the band gap (color centers – impurities, vacancies) or excitons generation

 other effects (luminescence, stimulated emission of radiation)



Solid-state lasers

LASER = Light Amplification by Stimulated Emission of Radiation

produced radiation – monochromatic, coherent, high intensity, high collimation

Stimulated emission

transition of electrons between discrete energy levels (E2 > E1, E2 – E1 = h)

electron decay from excited to ground state  spontaneous emission, photon is generated

E

E1

E2

n1 electrons

n2 electrons
relative electron population at thermodynamic equilibrium  

(T > 0) n1 > n2

𝑛2

𝑛1
= exp −

𝐸2 − 𝐸1

𝑘𝑇
= exp −

ℎ𝜈

𝑘𝑇

electron pumping to higher energy level (energy absorption)  population inversion with     

n2 > n1 can be created; during irradiation more photons is generated than lost by absorption

propagation of light in the active medium leads to increase in light intensity  

𝐼 = 𝐼0 exp 𝑛2 − 𝑛1 𝐾𝑙 ; 𝐾 = 2/(𝑛2 − 𝑛1)

(𝐼0 - incident light intensity, 𝑙 – light path within the active medium)

reflection on mirrors  amplification due to interference of incident and reflected waves 

resonance frequency    𝜈 = 𝑛
𝑣

2𝑙
(v - light propagation speed, n - integer, l - active medium length)



Ruby laser

ruby – single crystal of Al2O3 (leuco sapphire) containing Cr3+ cations as substitutional 

defects

light absorption at 407 and 556 nm  excitation of Cr3+ 3d electrons to higher energy levels 

(three-level laser)

electrons stay on metastable levels for longer time (up to 3 ms)  population inversion

photon with suitable frequency causes electron excitation or decay with the same probability

 stimulated emission occurs

photon with the same energy, direction, and phase shift like the stimulating photon is emitted



active medium – ruby single crystal, rod with flat, parallel, 

highly polished, and silvered ends (one totally reflecting 

and one partially transmitting mirrors)

excitation radiation – xenon flash lamp

photons produced by stimulated emission repeatedly pass 

through the rod in axial direction; light is amplified and 

transmitted through the partially silvered end

wavelength of ruby laser light is 694 nm

(copied from W.D. Callister, Jr., Materials Science and Engineering, An Introduction. 7th Edition, John Willey 

& Sons, Inc., 2007)



Semiconductor lasers (laser diodes)

analogs of LED diodes, more complex structure consisting of thin layers with various 

composition and electronic properties

applied voltage ensures that there is a steady source of excited electrons and holes, 

population inversion can be created

photons are emitted due to recombination of electron-hole pairs, stimulated emission takes 

place to obtain laser beam

structure of GaAs semiconducting laser



production of laser beam by stimulated photon emission due to recombination of excited electrons-hole

pairs: photon emitted by spontaneous recombination stimulates avalanche recombination of other pairs, light

is amplified as it is reflected on mirrors, new electron-hole pairs are generated by electric current passing

through p-n junction
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Mechanical behavior of solids – response to an applied load or force

relation between outer load and inner bonding forces  deformation 

stress = force applied to a unit area   [N m-2 = Pa]

tensile or compressive load ()

force acts perpendicular to area

 elongation or contraction

shear load ()

force acts parallel to 

area

 shear deformation

torque  torsional deformation

continuous changes in cross-sectional area are ignored  engineering stress – average 

applied force is related to initial cross-sectional area

dimensional change = strain; engineering strain – final length is related to original length 



General stress-strain curve

U

E

S

P

s
tr

e
s
s

strain

proportional limit

elastic limit

yield point        (yield strength at specified strain offset, usually 0.2 %)

tensile strength

elastic region

(reversible

deformation)

plastic region

(permanent

deformation)

fracture (destruction)

Important mechanical properties:

elasticity: ability of reversible deformation (material returns to original size and shape after 

releasing the applied outer forces)

ductility: ability to undergo significant plastic deformation before fracture (very slight or no 

plastic deformation upon fracture  brittle materials)

strength: resistance to fracture (limit state of tensile stress leading to tensile failure); yield 

strength – the lowest stress producing a permanent deformation

toughness: ability to absorb energy up to fracture (tough material is both strong and ductile)



Elasticity

isotropic elastic body (polycrystalline compact materials, metals, plastics, etc.) 

tensile stress results in elastic deformation (strain)

 = F/A   = (l – l0)/l0 = l/l0

l0

l0 + l



up to proportional limit U the stress is 

related to the strain by Hooke’s law

 = E 

(E – modulus of elasticity, Young’s modulus, 

values in order of 1010 Pa)

shear stress  = F’/A  results in a shear 

strain  = l/l0 = tan 

stress strain relation (Hooke’s law)  = G 
(G – shear modulus)

)1(2  
G

E

x

y




 

Poisson’s ratio (y, x – relative deformations in perpendicular 

and parallel directions to the direction of tensile stress, resp.)

the  values range mostly between 0 and 0,5

l0

l





Note: Tensors

scalar – quantity defined by a single real number (magnitude)  zero-order tensor

vector – quantity defined by magnitude and direction  first-order tensor

in three-dimensional Cartesian coordinate system the vector  𝑣 is defined by triples of scalar 

components vx, vy, vz

 𝑣 = 𝑣𝑥 𝑖 + 𝑣𝑦  𝑗 + 𝑣𝑧𝑘

( 𝑖,  𝑗, 𝑘 – vectors of unit length pointing along the directions of positive x, y, and z axes, 

respectively)

 𝑣

 𝑖
 𝑗

𝑘

vx

vy

vz

x

y

z

magnitude (length) of the vector  𝑣

222

zyx vvvvv 




General relation between two vectors:

vector quantity defined by components (v1,v2,v3) is a function of other vector quantity

(u1,u2,u3), it can be expressed as a linear combination of the u1, u2, and u3 components

v1 = T11u1 + T12u2 + T13u3

v2 = T21u1 + T22u2 + T23u3

v3 = T31u1 + T32u2 + T33u3

vi = Tij uj

333231

232221

131211

TTT

TTT

TTT

Tij 

Tij – second-order tensor, defined by 9 components, each of them has a geometric and 

physical meaning (examples: surface tension, thermal conductivity)

relation between vector and 2nd-order tensor vi = Tijk Qjk  3rd-order tensor Tijk

(27 components)

relation between vector and 3rd-order tensor or between two 2nd-oder tensors  4th-order 

tensor, etc.

elastic moduli are 4th-order tensors



Elastic deformation of anisotropic solid

anisotropic solid (crystal) – both stress and strain are 2nd-order tensors

(force acts on a surface with defined orientation, deformation is related to an oriented surface) 

in general it can be described by 36 elastic coefficients

x

y

z

zz

xx

yy

xz

yz

zy

xyzx

yx

9 independent stresses can act on the crystal

(components express either tensile or shear forces)

xx tensile stress in the x axis direction in the plane

perpendicular to the x axis

yx shear stress in the y axis direction in the plane

perpendicular to the x axis

zx shear stress in the z axis direction in the plane

perpendicular to the x axis

etc.

zzzyzx

yzyyyx

xzxyxx

ijT









stress tensor Tij is symmetric

yx = xy, yz = zy , zx = xz

 stress in anisotropic solid is described by 6 independent stress 

components xx, yy, zz, yz, xz a xy



deformation of Cartesian coordinate system in the crystal

position vector  𝑟 = 𝑥 𝑖 + 𝑦 𝑗 + 𝑧𝑘 is changed to    𝑟 , = 𝑥𝑥 , + 𝑦𝑦 , + 𝑧𝑧 ,

change in point position after deformation:  𝑅 = 𝑟 , −  𝑟 = 𝑥 𝑥 , −  𝑖 + 𝑦 𝑦 , −  𝑗 + 𝑧(𝑧 , − 𝑘)

lengths of  𝑖,  𝑗, and 𝑘 vectors as well as angles between them are changed, changes in 

positions can be expressed as a function of vector  𝑟

𝑅 = 𝑥𝑒𝑥𝑥 + 𝑦𝑒𝑦𝑥 + 𝑧𝑒𝑧𝑥  𝑖 + 𝑥𝑒𝑥𝑦 + 𝑦𝑒𝑦𝑦 + 𝑧𝑒𝑧𝑦  𝑗 + (𝑥𝑒𝑥𝑧 + 𝑦𝑒𝑦𝑧 + 𝑧𝑒𝑧𝑧)𝑘

𝑅  𝑟 = 𝑢  𝑟  𝑖 + 𝑣  𝑟  𝑗 + 𝑤( 𝑟)𝑘

𝑒𝑥𝑥 =
𝜕𝑢

𝜕𝑥
𝑒𝑥𝑦 =

𝜕𝑣

𝜕𝑥
𝑒𝑥𝑧 =

𝜕𝑤

𝜕𝑥

𝑒𝑦𝑥 =
𝜕𝑢

𝜕𝑦
𝑒𝑦𝑦 =

𝜕𝑣

𝜕𝑦
𝑒𝑦𝑧 =

𝜕𝑤

𝜕𝑦

𝑒𝑧𝑥 =
𝜕𝑢

𝜕𝑧
𝑒𝑧𝑦 =

𝜕𝑣

𝜕𝑧
𝑒𝑧𝑧 =

𝜕𝑤

𝜕𝑧

 strain tensor Dij (symmetric 

tensor of second order)

𝐷𝑖𝑗 =

𝜀𝑥𝑥 𝛾𝑥𝑦 𝛾𝑥𝑧
𝛾𝑦𝑥 𝜀𝑦𝑦 𝛾𝑦𝑧
𝛾𝑧𝑥 𝛾𝑧𝑦 𝜀𝑧𝑧

𝜀𝑥𝑥 = 𝑒𝑥𝑥 𝛾𝑥𝑦 = 𝑒𝑥𝑦 + 𝑒𝑦𝑥

𝜀𝑦𝑦 = 𝑒𝑦𝑦 𝛾𝑥𝑧 = 𝑒𝑧𝑥 + 𝑒𝑥𝑧

𝜀𝑧𝑧 = 𝑒𝑧𝑧 𝛾𝑦𝑧 = 𝑒𝑦𝑧 + 𝑒𝑧𝑦
physical meaning of the components:

xx, yy, zz – changes in lengths of coordinate 

axes

xy, xz, yz – changes in angles between

coordinate axes after deformation



Hooke’s law in anisotropic solid

relation between stress and strain tensors

Tij = Cijkl Dkl

Cijkl – elastic moduli, symmetric tensor of fourth order (81 components)

number of components is reduced due to symmetry, as  Cijkl = Cjikl = Cijlk = Cklij

(from 81 to 36, only 21 components are independent)

increasing symmetry of crystal lattice results in decreasing number of independent 

components

determination of elastic moduli – speed of sound measurements in certain crystallographic 

directions

(for example, in cubic crystals the speed of sound is measured in crystallographic directions [100], [110], 

and [111])



Plasticity

elastic deformation – reversible and homogeneous, outer load causes a slight shift

of atoms from their equilibrium positions

plastic deformation – permanent and non-homogeneous, some atoms are shifted 

of at least one interatomic distance to new positions

shift of atoms in certain crystallographic directions and planes with the most dense 

atomic packing is preferred; stress causes slip (a small slice of crystal is moved 

sideways) or mechanical twinning (a part of crystal attains different orientation)

planes most closely 

packed with atoms

slip planes

direction of force

plastic deformation by slip

plastic deformation and slip in zinc

single crystal exposed to strain stress



Example:

Face-centered cubic crystal structure:

the (111)-type planes are closely packed

with atoms, slip can occur along the

[110]-type directions; their combination

results in 12 slip systems

4 independent (111)-type planes and 3

independent [110]-type directions in each

of them

Body-centered cubic crystal structure:

close packing of atoms in the (110)-type

planes, slip can occur along the [111]-

type directions, their combination results

in 12 slip systems

6 independent (110)-type planes and 2

independent [111]-type directions in

each of them



metals with FCC and BCC crystal structure having large number of

slip systems are ductile (plastic deformation is possible along the

various systems)

metals with HCP crystal structure are quite brittle as they have few

slip systems

(copied from W.D. Callister, Jr.: Materials Science and Engineering, 

An Introduction. 7th Edition, John Willey & Sons, Inc., 2007)



Note: Indices of crystallographic planes and directions in hexagonal crystals

Miller-Bravais system with 4 coordination axes can be used in hexagonal crystals; 3 axes (a1,

a2, a3) with angle of 120° between them in the basal plane and z axis perpendicular to this

plane. Miller indices (hkl) are changed to (hkil), where h+k+i = 0, i.e., i = -(h+k).

Transformation of crystallographic direction [uvw] to four-index [u’v’tw’] system

(n is the factor sometimes needed to make the new indices into smallest integers)

x

y

z

a
a

[110]

c

Transformation of [110] direction:

𝑢′ =
𝑛

3
2𝑢 − 𝑣 𝑣′ =

𝑛

3
2𝑣 − 𝑢 𝑡 = − 𝑢′ + 𝑣′ 𝑤′ = 𝑛𝑤

𝑢 =
𝑛

3
2 − 1 𝑣 =

𝑛

3
2 − 1 𝑡 = − 1 + 1 𝑤 = 𝑛 0 ⇒ [11 20]



Plastic deformation by twinning

shear forces produce atomic

displacement; atoms on one side

of a twin plane are located in

mirror image positions of atoms

on the other side
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Theoretical shear stress for slip initiation

atoms are shifted in x direction after attaining the th value to new positions at distance of

lattice parameter a

th corresponds to shear stress at atom shift
of x = a/4 and reverse shear stress at x = 3a/4
(atoms are attracted to neighboring position)

forces are balanced in a middle interatomic

position at x = a/2
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for metals with cubic crystal structure a = b, G ~ 1010 N m-2  th~ 109 N m-2, measured

values of slip-initiating shear stress are much lower (107 – 108 N m-2)

real crystals contain defects (applied stress can cause movement of dislocations and

generation of the new ones)

atomic rearrangements accompanying the movement of an edge dislocation caused by

shear stress  a step corresponding to magnitude of of Burgers vector 𝑏 is formed on the

crystal surface



dislocation motion in

crystal needs much

lower shear stress

compared to shifting

whole layer of atoms

edge dislocations of the same sign and lying in

the same slip plane repulse each other

edge dislocations of opposite sign and lying in

the same slip plane attract each other and

annihilate upon meeting

atomic lattice distortion around the

dislocation line  compressive,

tensile, and shear lattice strains

imposed on neighboring atoms



formation of a step on crystal surface by motion of the edge and screw dislocations

steps formed on surface of crystals exposed to

plastic deformation are too high in comparison with

magnitude of Burgers vector (approximately 104

dislocations should pass through the slip plane to

reach the observed steps height)

 a source of multiple dislocations has to exist in

the crystals under stress

micrograph of SiC single crystal surface

– spots show positions, at which

dislocations intersect the surface



dislocation lines pass through regions, in which their motion is difficult or disabled, for

example due to presence of impurity atoms:

substitutional impurity atoms of different size cause tensile and compressive lattice strains

imposed on host atoms; interactions between dislocations and impurities result in partial

compensation of impurity-dislocation lattice strains, dislocation motion is restricted

 resistance to slip is increased, greater stress must be applied for continuing plastic

deformation (strengthening of the material)

or

 dislocation is anchored in such site and its motion is disabled, multiple dislocations can be

generated in the slip plane



Frank-Read source

straight dislocation in slip plane is pinned in two ends, shear stress exerted on the slip plane

results in a force acting perpendicularly to the dislocation line, which is lengthened and

curved, until the segments spiralling around the pinning points collide and cancel; expanding

dislocation loop as well as new dislocation line between pinning points are formed





Köhler-Orovan mechanism of dislocation

multiplication

dislocation line moving over impurity

defects in slip plane is gradually curved

to form dislocation loop around each

defect but its motion continues in a given

direction



stress needed to move dislocation within a plane of atoms (Peierls-Nabarro stress)

PN ~ 102 N m-2, too low value in comparison with slip-initiating shear stress (107 – 108 N m-2)

perfect structure of crystal with very slight concentration of dislocations is expected

Strengthening

plastic deformation depends on mobility of dislocations

dislocation concentration in plastically deformed materials increases (generation of multiple

dislocations)

dislocations outside the slip plane do not move, active dislocations moving in slip plane have

to overcome those with different orientation

impurity defects complicate the dislocations motion

 increasing applied stress is needed to continue in plastic deformation

𝜏𝑃𝑁 = 𝐺 𝑒𝑥𝑝 −
2𝜋𝑊

𝑏
𝑊 =

𝑎

1 − 𝜈
(dislocation width)

(G – shear modulus, b – interatomic spacing, a – interplanar spacing,  - Poisson’s ratio)



polycrystalline materials: strengthening by grain boundaries

grain boundaries represent barriers to dislocation motion (slip planes are discontinuous and

change directions across the boundary)

 accumulation of dislocations in front of the grain boundary

lattice strain at the grain boundary

• generation of the multiple dislocations is gradually reduced up to disabling the source

(strengthening within the grain)

• new source of multiple dislocations can be activated in neighboring grain

• slip in other slip planes can be induced



Z1

Z2



Creep

plastic deformation under long-term static mechanical stress resulting in fracture

often observed at higher temperatures (T > 0.3 Tm)

time

c
re

e
p

 s
tr

a
in

 = const

I II III

rupture

high-temperature creep

 =  t +  tn

,  - constants, n = 1/3

I. primary (transient) creep: continuously decreasing creep rate; stress initially induces

motion of dislocations and generation of multiple dislocations but strengthening occurs with

increasing concentration of dislocations

II. secondary (steady-state) creep: constant creep rate; balance between strain

strengthening and recovery (recovery – material becomes softer and retains ability to be

deformed; dislocations climb out of the slip plane, grains change shape, etc.)

III. tertiary creep: creep rate acceleration and rupture due to microstructural changes (grain

boundary separation, formation of internal cracks, cavities and voids)



Fracture

separation of material into two or more pieces under action of stress, new surfaces are 

formed

elastic materials with only narrow region of plastic deformation  brittle fracture; fracture 

surface is relatively flat, in single crystals often cleavage along definite crystallographic 

plane with low Miller indices

materials exhibiting considerable plastic deformation  ductile fracture; extensive 

deformation (necking) before fracture, undulated fracture surface

cleavage fracture in silicon 

single crystal

brittle fracture in steel ductile (cup-and-cone) 

fracture in aluminum



Theoretical strength

tensile stress th necessary for separation of a body into two parts

brittle crystal with defect-free structure exhibiting no plastic deformation and tensile stress

acting normal to a crystallographic plane are expected; theoretical strength is related to

interatomic forces
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elastic strain energy (WD) consumed for fracture of a completely brittle material corresponds

to surface energy of created two new surfaces (2)
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values of E, , and r0 can be obtained from experimental measurements and theoretical

strength th can be calculated

th ~ 1010 N m-2  observed fracture strength values are much lower (~ 108 N m-2)
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Critical stress

fracture stress is affected by microscopic flaws and cracks in the material

defects are always present under normal conditions at the surface and in the interior,

applied stress can also induce their formation and growth (e.g., accumulation of

dislocations or vacancies), crack propagation is observed

elastic strain in material act against the applied stress but it

diminishes around the microscopic crack; the applied stress is

concentrated at the crack tip

Griffith criterion: release of elastic strain energy has to be

greater than energy increment connected with creation of new

surfaces

critical stress calculation:

elastic body of unit thickness contains elliptical crack with 

length of 2c is expected



release of elastic strain energy at crack length increase dc:

dc
E

c
dWD

22 


increase in surface energy at crack length increase dc: dWP = 4 dc

crack starts to propagate after reaching critical length of 2c, total energy (WD + WP) is maximum

when WD and WP are balanced:

0
dc

dW

dc

dW PD

WD

WP+W

-W

0

c
2c

W

Griffith formula was derived for tensile stress

acting in a thin layer, stress oriented along

the layer normal was neglected

critical crack length for brittle materials

2c ~ 10-7 m

𝜎𝑐𝑟 =
2𝛾𝐸

𝜋𝑐



Ductile fracture

tensile strength increases in materials exhibiting plastic deformation (P > S)

plastic deformation energy associated with crack extension has to be taken into account

pl – local plastic deformation energy at the tip and around the crack, it is dependent on

temperature (at very low temperatures pl  0, at higher temperatures pl >> )

cross-section area decreases with increasing tensile stress up to material rupture

Fatigue

repeated stress or strain cycling decreases tensile strength (fracture even at  < S)

oscillation movement of dislocations  interactions, limited mobility in some areas, mosaic

structure of material, increased probability of cracks formation

stress amplitude vs. number of cycles to failure (Wöhler curve)

c

Epl

kr





)(2 


a

Nx c

Nx N

materials without fatigue limit, failure will 

occur at any stress level a (fatigue 

strength) after specified number of cycles;

fatigue life is defined as number of cycles 

Nx at specified stress level Nx

materials with stress level (fatigue limit)

c, below which fatigue failure will not 

occur even at infinite number of cycles



Stress-strain tests

Tension test

specimen is elongated by moving crosshead, load cell and extensometer measure the 

magnitude of applied load and elongation

Bending test

specimen is placed on two supports and bent in its midpoint; the flexural strength gives a 

measure of the amount of bending that an object can sustain without fracture

Impact fracture testing

specimen with machined V-notch is used, the load is applied as an impact blow from a 

weighted pendulum hammer that is released from a position at fixed height; energy 

consumed for fracture is evaluated



Hardness

resistance of material to localized plastic deformation (e.g., small dent or scratch)

there is no general dependence between applied force and hardness

many parameters can affect the test (anisotropy of crystal structure  measured

crystallographic plane, lattice defects, single crystal vs. polycrystalline material, material

homogeneity and microstructure, etc.), difficult definition of hardness – various methods are

used

often is measured by forcing a chosen solid (indenter) into the material to be tested

(a) kyanite (Al2SiO5)

(b) halite (NaCl)



Mohs scale

qualitative ordinal scale consisting of 10 minerals characterizing scratch resistance of minerals

through the ability of harder material to scratch the softer one

Mohs hardness mineral chemical formula

10 diamond C

9 corundum α-Al2O3

8 topaz Al2SiO4(F,OH)2

7 quartz SiO2

6 orthoclase feldspar KAlSi3O8

5 apatite Ca5(PO4)3(OH,F,Cl)

4 fluorite CaF2

3 calcite CaCO3

2 gypsum CaSO4∙2H2O

1 talc Mg2Si4O10∙Mg(OH)2

minerals in Mohs scale do not represent a linear dependence in absolute hardness, therefore,

Mohs scale was rearranged and 5 synthetic hard materials were added



Mohs

scale

rearranged

scale

material chemical formula Vickers hardness

[GPa]

10 15 diamond natural (bort) C 90 – 100,6

- 14 diamond synthetic 

(carbonado)

C 80 – 90

- 13 boron nitride (cubic) β-BN 70 – 80

- 12 boron carbide B12C3 – B13C2 40 – 48

- - silicon carbide SiC 38 – 41

- 11 boron B 34 – 36

- 10 titanium carbide TiC 30 – 34

9 9 corundum α-Al2O3 20 – 24

- - tungsten carbide WC 17,5 – 18,5

8 8 topaz Al2SiO4(F,OH)2 14,0 – 18,0

7 7 quartz α-SiO2 10,0 – 12,5

- 6 magnetite Fe3O4 6,0 – 8,5

6 - orthoclase feldspar KAlSi3O8 4,5 – 7,14

- 5 scheelite CaWO4 5,5 – 7,0

5 - apatite Ca5(PO4)3(OH,F,Cl) 2,5 – 5,4

4 4 fluorite CaF2 1,64 – 2,6

- 3 galena PbS 1,10 – 1,5

3 - calcite CaCO3 0,56 – 1,05

- 2 halite (rock salt) NaCl 0,3 – 0,9

2 - gypsum CaSO4∙2H2O 0,35 – 0,8

1 1 talc Mg2Si4O10∙Mg(OH)2 0,024 – 0,11



Indentation methods for hardness determination

hardness of materials to deformation is expressed as relation between applied load and area

or depth of penetration; indenters of various shapes made from specified materials are used



W.D. Callister, Jr.: Materials Science and Engineering, An 

Introduction (5th Edition, John Willey & Sons, Inc., 2000.

Askeland D. R., Phulé P. P.: The Science and Engineering of 

Materials (4th Edition). Thomson Brooks/Cole 2003.

conversion of Vickers hardness (HV) to 

value in rearranged H15 hardness scale:    

H15 = 0,67 HV-1/3
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