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Use in Control System

e Describing of dynamic properties of a control system
e - controlled system and

e - actuators

* Solving integral-differential equation

 Creating transfer function of dynamic system




Definition formula of Laplace transform
Laplace transform belongs to integral transforms, which are defined by this common formula:

F(p)=[K(p.t)- f(t)dt

Definition formula of Laplace transform:

F(R=L{fO)}=[f)-e "t

e L is the symbol of Laplace transform

f(t) is an original function (standard time function)

t is the real variable, usually time in our case

F(p) is a complex function of complex variable p

* p is transform variable, this is complex number p € C

Only one complex function F(p) belongs to original function f(t).
Only one original function f(t) belongs to complex function F(p).




Solved Examples

Find the Laplace transform of the following functions.

* Constant: f)=A )0 1.L{A}=TA-e‘“dt=A{—l-ept} =A(—1~0+1-1J=A
Ay > p . p P p
p
* Exponencial function: f=e™ a)0 o ifef=fe=.e™ dt:je(a*p"dt:{—le(a*"“} —04 1
1 ° ° a+p o p+a
L{efa'[}:
p+a
: : : : 1 jo jot cosa)tzl(ej""ﬂte"'”t)
e Sinusoidal functions: sma)t=2—j(e“" —eiet) >
1 7 - 1% - L i
3. L{sinwt = — [(el® —e i@ ).ePdt= — e (Prieltgy _ fe-(Priolg || =
fnot = 5 oo )eras g flommafea |
1( 1 1) e
2j\p-jo p+jo) p*+o°
f(t) = sin(wt F(p)=—2
(t) =sin(wt) = F(p) o
p

f(t)=cos(wt) = F(p)=

2 2
@




Basic Laplace Transform Theorems

e 1. Linearity ( transform of linear combination of functions))

L{Zci - f. (t)}: Zci .L{fi (t)}: Zci -F(p) where c; is constant

Using theorem of linearity:

- L-transform of function multiplied by constant:

L{A- f(t)} = A-L{f ()} = A-F(p)

- L- transform of the sum of functions

L{f, )+ f, )+, (t)} = L{f () }+ L{F, (O }+-L{F, @)} = F.(p) + F,(p) +---F, (p)




Basic Laplace Transform Theorems

e 2. Shifting (multiplying of time function by an exponential)

Lie* - f(t)}=F(p-a)

3. Diferentiation of L-transform (multiplying of time function by the variable t)

L{t-f(t)}=—j—pF(p>

Examples:

d d 1 1 .
L{t}=L{t1t)} = ——L{1)}= -2 = = funct
{ti=L{t-1t) | o {1t) } i — ramp function
L{t2 }: L{tz-l(t) }:i3 parabolic function
Y




Basic Laplace Transform Theorems

4. Shift in time (multiplying of transforms by an exponential)

L{f (t—a)}: L{f (t—a)-l(t—a)}: e ™. L{f (t)}: e F(p)

Number a=0 be a real constant

5. Differentiation of time function

a) first-order derivative fi(t): L{%} PF(p) - f(0)

. . df | % df I .
We have to use integration by parts here: L{E}zl R LORC ]0 +p-[1(0)-e"dt=— 10+ pF(p)
b) second-order derivative fi?(t): L{Z:}z p2F(p)—p- £(0)— f ¥ (0)

It can be generalized:

(n)
L{—it(n]: } =p" -F(p)—p"f(0)—p"* £ (0)~----p- TP (0) £ (0)




Basic Laplace Transform Theorems

6. Integration of time function

L{j f(t)dt} - % F(p)

We also need the integration by parts here:

o]

T { j f(t)dt]eptdt = {—%-e‘”j f(t) dt}

+£-fo(t)-e‘IOt dtzi-F(p)
P o P

0

Laplace transform technique transforms a time domain differential equation into a
frequency domain algebraic equation.




The final-value and initial-value theoremes.

 Two theorems, that can be used to find the value of the time-domain function at
two extremes, t = 0 and t = == without having to do inverse L-transform.

1. The initial theorem: f(t—0)=?
limf@®)=1lim p-F(p)

t—0 p—

2. The final value theorem: f({t—x)=?

'LTf(t):|§£E‘ p-F(p)
The final value theorem gives the final value (t— <) of a time function its Laplace
transform and as such very useful in the analysis of control systems. However, if the
denominator of p-F(p) has any root having real part as zero or positive, then the
final value theorem is nod valid.

©N0lo




Example

1. Consider f(t) = el. Clearly we have f(oo) = oo,

F(p) =1/(p-1) > limp-F(p)=lim p-—1 -0 which is not equal to f(oo).

p—0 p -1

2. Consider f(t) = sin2t. Value f(t-><°) is not defined.

F(p)=—>— — limPp-F(p)=limp-——— =0
0% +4 i 74 The formula is not valid again.

Conclusion:
If all poles of p.F(p) have negative real parts, then the final-value theorems is valid.

[@Nolen




Final value theorem - examples

e Find f(eo) if F(p) is given by:

1

F(p)=—— - P+l f (=) =
-5 N CE) R R B
p—2
F(p)= _ p+l _
p(p+1) F(p)—ﬁp 071 f(0) =1
F(p)= ( +2—p';(5+2+') F(p) = 1
PP VAP . P  p+2p?+9p+68
1 3 2
F(p)= . . p*+p° -2
P = =) F(p) =

p*+2p*+2p°-2p-3




Laplace Transform Common to control problems

1. Step function:
f@)=A-ut) = F(p) =%Where

1 for t)0 1
u(t)_{o for (0 } = Liu®f=-

Definition of unit step function is also called Heaviside function in mathematics.

2. Ramp function:

f(t)=a-t, fort>0and a=const.

L{ath=a-L{f() }=a—r

p




Laplace Transform Common to control problems

3. Time delay function
It is called also dead time function or transport-lag function.

It is defined such that an original function f(t) is shifted in time t,,.

This time delay function can be written as:

f(t—t) = 0 for t—t, (0
| ft-t,) for t—t, ) O

L{f(t—t)}=L{f(t-t,)-1(t—t,)f=e™"-L{f(t) j=e""F(p)




Laplace Transform Common to control problems

4. a) Rectangular-pulse function

0 for t{(0
f(t)=4 A for O(t(T t=Alu(t)-ut-T)] L{f(t)}:%(l—e"”)
0 for t)T

b) Unit rectangular —pulse function

We can define a rectangular pulse such that the area is a unity.

0 for t(0
f(t)=4 /T  for O(t(T =T1[u(t)—u(t—T)]
0 for t)T

1 1(1 1 ) Ly
L{?[u(t)—u(t—T)]}:?(B—Be j_p_l_(l e ®)




Laplace Transform Common to control problems

5. Impulse function

The impulse function is called Dirac function (or simply delta function). We can consider the impulse
function as the units rectangular function as T shrinks to zero while height 1/T goes to infinity.

f(t) = 5(t) '” ‘ A 7
L{s(t) }=1
L{A-5(t) j=A

[s(t) dt=1

Schematic representation of the Dirac delta function by &7
a line surmounted by an arrow. The height of the arrow is
usually meant to specify the value of any multiplicative
constant, which will give the area under the function. The
other convention is to write the area next to the

arrowhead

https://en.wikipedia.org/wiki/Dirac_delta_function




Table of Laplace transform pairs

F(p)= L{f(t)} flt) F(p)= L{f(t)} flt)
1 a(t) -t sinh at
p—a
3—1;, 1 - cosh at
p—a
1 gn=1 D .
P (n—1]! —H—g—u{p_ +_; )2 tsin wt
1 af P‘E - ub'z ,
p—a ‘ {p_ +w }_ foos wt
1 e —_— e sin wt
p—a (n=1)! (p—a) +w o
e sin wt p—d ™ cos wt
P+ w* (p—a)® +w” o
—-_,—p—-_; coswt
P tw

http://cam.zcu.cz/~danek/Students/ME4/slovniky/LT.pdf




Solved examples

1. f(t) = 2 + 3te—2t — 412=3 6. f(t) = (2t +5)e™* +3cost — 2sin3t
: F = 2 5 dp 6
F(p) =3+ Gizp — Gy [::]' E}?F'-’Jrﬂz"';ﬁ_l 74
& = [ >
etf(V2 Flp—a), a=-2, a=-3 e (1) = F(p+2)
Y Fay Y . E
£ t2 22 % 120, 12 % cost & fq sindt £ o
2. f(t) = 3sin 2t — 5 cos 2 7. f(t) =1(sin2t + 4“"””}
: -5 : =_[_2 ip — Ap*+ip—16
Flp) = i — 75 = v Fip) (PEH N P-+”-) 1)
= al e g A 2 e T A
:sin?tépli_m. {'052!5;,%. Lf(t) = —F(p) “’mzfi?ﬁ' cos 2t £ F—’lj—_*-
3. f(t) = 3t —sin2t 8. f(t) = (t 4 2)cos3t
SR 2 ! 2 Z_g 2 2p% 4+ p®+18p—9
Fo) =3 -7 Fip) = - (7#s) + % = gy + it = gt
£ g sin2t 2 5y LF(t) 2 —F'(p) cos3t 2 .
4. f() =12 -1+ 3e~t +cos 9. f(t) = (3t2+2t —1)e~t + (t + 1)sin 2t

Flp)=5 -1+ 2 4+ A i) = 8 3 1 2 \', 2 _ & 2 1 ip 2
Pt TR F(p) = grip + goor — 501 — (p“+-1) TER T TEr e TR T
T ! a2 & 1
p;L:F!I L] -

o3, cos2t £ fo e~tf(t) £ F(p+1), tf(t) £ —F'(p)
1

L

; . 1 -
. () = det + 2o 4 gin ot _;_%r & frb sin 2t £ ;!%-

o

4 2 2 s
Flp)=;3+:;5t7a 10. f(t) = te™™ + (t — 5) cos 3t

efit) 2 Flp—a), a=1,a=-3 12 % sin 2t £ i 5p pi_g 55

’
5 S . _ | _
F[P} = prae (p—’+£l) =+0 = (pra) + 02 ]

e=¥f(t) £ F(p+3), tf(t) £ —F'(p) avzorce t £ 2. cos3t £ 5

https://math.feld.cvut.cz/prucha/m2c/Itru.pdf




Revision

1.Write the definition formula of L-transform.
2. Do you remember Laplace transform of this following functions ?

1(t) | =

{
e} -
oM} =
{ f

i

—

r r

)} =
f(t) dt }

O — 8




3. Write L-transform of
the unit step
a constant function
the ramp function
an exponential function
Dirac function
derivation: L{ X'(t)} =

function shifted in time: L{f(t-a)} =

Revision
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2. Inverse Laplace Transtorm




Inverse Laplace transform of rational function

Find the inverse Laplace transform of the following function using partial fraction expansion:

1. Function has distinct real roots:

6p2 —12 A B C
F(p)= = + +
(p+D(p+2)(p-2) p+1 p+2 p-2
: . 6p° —12 -6
A=lim(p+1)-F(p)= =—n=2
lim m 20-2 " 3
. : 6p° —12
B= +2)-F(p)= -
lim(p+2) F® =m0k -2
6p2 —12

C=1lim(p-2)-F(p) =i -
lim(p=2)-F(e) =lim e ey




6p2 —12 2 3 1

F(p) = SHL SN S
(p+D(p+2)(p-2) p+1 p+2 p-2

Then the inverse L-transform of function is the sum of inverse L-transform of
particular fractions.

f(t) =2-e" +3.e™ +e™

(this is the sum of three exponential functions)




Inverse Laplace transform of rational function

Find the inverse Laplace transform of the following function using partial fraction expansion:

2. Function has two complex conjuated roots:

p+5
F(p)=
() P> +4p+13
Roots can be found using Matlab command: >> p = roots(num, den)
p;, = -213]
A B
F(p) = —+ :
(p+2-3)) (p+2+3))
i : p+5 —2+3)+5 3+3) 3-3) 1 :
A= +2-3 = = = =—1-
pLI_EDsj(p J)(p+2—3j)(p+2+3j) —2+3)+2+3] 6] 6 2( )
1 .
B=—(1+
51+ 1)

Computation of coefficient B is not necessary, because it must equal to the complex-conjugate of A.

[@Nolen




1, . 1, .
2(1—J) ) 2(1+J)
(p+2-3j) (p+2+3j)

F(p)=

Then for t > 0:

FO =20 )-e ot s j)ets o =2

= e .[2-(cos3t +sin3t)]

You can see that the function f(t) is the sum of two harmonic functions.

f(t) :%(1— J) ,e(—2+31)-t +%(1_|_ J) _e(—2—31)-t :%.eZt [(1_ J) .e3jt n (1+ J) .e—3jt]:

:%e—Zt (_ je3jt 4 je—Sjt 4l +e—3jt):%e2t|:2%<e13t _e—j3t)+2%<ej3t _|_e—j3t):|:
J

= %eZt(Zsin:%t + 2cos3t )




Inverse Laplace transform of rational function.

Find the inverse Laplace transform of the following function using partial fraction expansion:

3. Function has repeated roots:
32 - A + & 2t . 3t °
(p+1)°(p+2) (p+1) (p+D)° (p+1)° p+2

We can state the general formula for computing A..

F(p)=

~_[(p=p)"-F(p)

Ai:(m_) lim

' pop, dp”“1

where m =3 (which is the number of repeated roots)




1 d? dz 2 +4

A= o M gy (SIS 2 1M 407 (p+2) Elp'lnl(p+2)
1 d : d 2 2

A, = 1) F(p)|= - _
(3- Z)LEde[“}+) (7)]- M o (o2 MM 2 ™

A, =lim (p+1)*F(p)=2

p—-1
B = Iir‘q (p+2)F(p)=-2
p—>—
2 —2 2 —2
Then: F(P)=

+ + +
(p+1) (p+D1)°* (p+1)° p+2

2 2
ft)=2-e" -2t-e™ +2%-et —2.e7% :2{(1—t+t2)et —eZt}




Problem solving:

Find the inverse Laplace transform of the following functions:

6p
F(p) =
a) TP e+ 2(p-2)
6
b) F =
L FR) = T 2)(p+3)
Answer :

a) 2.et -3.e?t + et

b) 3.et - 6.e2t + 3.e3t




Problem solving:

Find the inverse Laplace transform of the following functions:

a) F =
®) p(p+1)
5
c) —
F) p-(p*>+4p+5)
Solution:
a) f(H)=1—et

c) f(t)=1—e % cost—2e ?*tsint

b 1
PO = e
d) Fp)=— 2L 10

p-(p?+4p + 3)

b) f(t) = e sin(2t)

d) f(£) =2—25et +-e




Differential equation solving using Laplace Transform

Find the L-transform of the differential equation given below and hence evaluate the time solution
of the it, when the initial conditions are y(0) =0, y’(0) = 6.

y''(t) +5y'(t) + 6y(t) =12¢'

Solution in L-transform:

AP PYO-YO) + 5 (pY(P)-YO) + 6=,
pZ.Y(p)—6+5-p-Y(p)+6'Y(p):%

, _b6p+6
Y(p)-(p? +5p+6)= -1

6p+6
p—ﬂ(p2+5p+6)




Solution in time domain:

4 4 6-p+6 4] 1 2 3
YO=L (=L {(p—l)(pz +5p+6)}_L {p—l+ p+2 p+3}

y(t)=e" +2e* -3




Obtain the solution of diferential equation given below:

d?x

2 T2 % +2x =20 given x(0)=0 and x'(0)=1

; d?x s dx o] —
() + 12 ) e =
[p2X(p) — p - x(0) — x(0)] + [2pX (p) — x(0)] + 2X(p) = 0

1 1




Obtain the solution of diferential equation given below:

dx

2
dt

+ 8x = 10; given x(0) = 2

Taking L-transform of both sides the following equation is obtained:

L2 4 el = L{10}
TR

2[pX () — x(0)] + 8X(p) = 1170
Substituting x(0) = 2

10
2[pX(p) — 2] + 8X(p) = >




Simplifying:

Using partial fraction expansion:

oy Ly k2125 075
p p p+4 p pH+4

Taking inverse L-transform of both sides:

x(t) = 1,25 + 0,75e~ %




Introduction to Symbolic Math Toolbox

Creating symbolic variables

e constructing real symbolic variables

>> t=sym('t','real’)

e constructing positive symbolic variables

>> a=sym('a’,'positive’)

e using the shotcut for creating symbolic variables
>>syms p pl p2

» creating real and positive symbolic variables
>> syms t real

>> syms m n positive

>> p=sym('p’)

e list current variables

>> who




Special function: Heaviside, Dirac, exponential

>> h=sym('heaviside(t)')
h =
heaviside(t)

>> d=sym('dirac(t)')
d =
dirac(t)

>> e=sym('exp(-5*t)')
e =

exp(-5*t)




Laplace Transform in Matlab

Transform of the unit step
>>Syms pt

>> H=laplace(h,t,p)

H =

1/p

Transform of the unit impulse
>> D=laplace(d,t,p)

D=

1

Transform of the exponential function
>> syms a

>> F=laplace('exp(a*t)',t,p)

F=

1/(p - a)




Inverse Laplace Transform in Matlab

>> hi=ilaplace(H,p,t)
hi =
1

>> di=ilaplace(D,p,t)
di =
dirac(t)

>> fi=ilaplace('1/(p+2)",p,t)
fi=
exp(-2*t)

>> f = ilaplace(F,p,t)
f=
exp(a*t)




Problem solving

Find the inverse Laplace transform of the following functions using Matlab.

o f1(t) = e8¢

e f2(t) = sin(-8t)
e f3(t) = cos(-8t)
e f4(t) = 10

o f5(t) =t

o f6(t) = t2




Laplace transform of rectangular pulse in Matlab

>>syms a positive;
>>syms T real;

>> h=sym(‘heaviside(t)’);
>> h5= sym(‘heaviside(t-T)’);
>> HH=laplace(h-h5,t,p);

or

>> hh=h-subs(h,t,t-T);
>> HH=laplace(A*hh,t,p);




Limits theorems of L-transform in Matlab

The initial value theorem of f(t) = e 3t =>F(p) = p—;

>> syms t,p;
>> f=sym('exp(-3*t)');
F=sym('1/(p+3)');

* In time domain:
>> f0=limit(f,t,0)
fo =

1

* In Laplace transform:
>> FO=limit(F*p,p,inf)
FO =

1




The final value theorem in Matlab:
* |n time domain:
>> finf=limit(f,t,inf)

finf =
0

* In Laplace transform
>> Finf=limit(F*p,p,0)

Finf =
0
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3. Introduction to Matlab




Introduction to Matlab

e Matlab offers tools for technical computing and model-based design.

* Widely used throughout industry, government and academia.

* These products are accelerating the pace of discovery, innovation,
development and learning in engineering and science.




Tools useful for control system design and analysis

MATLAB — the language of technical computing

e Control System Toolbox

e System Identification Toolbox

e Fuzzy logic toolbox

e Robust Control Toolbox

* Model predictive Control Toolbox
e Simulink Control Design

e Symbolic Math Toolbox

SIMULINK — simulation and model based design




The MATLAB product family

* Provides a high-level programming language, an iteractive technical
computing environment, and function for algorithm development,
data analysis, data visualisation and numeric computation.

e MATLAB products enable a wide range of computationally intensive
tasks, including filter design, statistics, flight test analysis and spectral
analysis.




The SIMULINK product family

e It is an intensive block-diagram environment for simulation and
Model-Based Design. Its graphical tools enable engineers to
accurately describe, explore and implement the behavior of control,
signal processing, image processing, communications, and physical
systemes.

e Simulink and related products support key elements of the
development proces for embedded systems, including requirements
capture and specification, design, implementation and test and
verification.

©N0lo




Matrixes and vectors in Matlab

 All variables are considered as matrix.
e Create a matrix or a vector: >>A=[1 2 ;3 4]
A=

1 2

3 4

A column vector is represented as an mx1 matrix. A row vector is represented as a 1xn matrix.

A is the name of variable - there is a distinction between capital letter and small letter.

The components are in the square brackets.

The components are separated by blank space and the rows are separated by semicolon or back
space.

Matrix and vector components must be arithmetical expressions (numbers and/or symbolic
expressions).

©N0lo




Special types of matrixes

e |dentity matrix: eye(n) generates a rectangular matrix nxn with ones on the main diagonal

>> |=eye(2)
| =
1 0
0 1

e Zero matrix: zero(m,n) ) generates a rectangular matrix mxn of zeros

>> 7=zeros(2,3)
7 =
O 0 O




Special types of matrixes

* Ones matrix: ones(n) generates a rectangular matrix nxn of ones.

>> 0=ones(2)
0=
1 1
1 1
e Random matrix: rand(m,n) returns an nxm matrix of random numbers.
>> R=rand(2,3)
R =
0.8147 0.1270 0.6324
0.9058 0.9134 0.0975




Matrix operations
We can do matrix arithmetic using the standard arithmetical operators.

Addition Substraction

>> A=[12;3 4] >> C1=A-B
A= Cl=
1 2 1 O
3 4 0O 1
>> B=[2 2; 3 3]
B =
2 2

3 3
>> C=A+B
C=

3 4
6 7




Matrix operations
We can do matrix arithmetic using the standard arithmetical operators.

Multiplicative operations - based on definition Multiplicative operations- element-by-element
>> A=[1 2;3 4] >> C1=A.*B
A= Cl=

1 2 2 4

3 4 9 12
>>B=[2 2; 3 3]
B=

2 2

3 3
>> C=A*B
C=

8 8

18 18




Matrix operations
We can do matrix arithmetic using the standard arithmetical operators.

Division operations - based on definition Division operations- element-by-element
>> A=[1 2;3 4]; >> C2=A.\B
>>B=[22;31]; C2=
* A\B backslash or left matrix divide 2.0000 1.0000
ltis the sameas A1 x B 1.0000 0.2500
>> C=A\B >> C3=A./B
C= C3 =
-1.0000 -3.0000 0.5000 1.0000
1.5000 2.5000 1.0000 4.0000

e A/B Slash or right matrix divide.
ltis the sameas A* B~1
>> C1=A/B
Cl=
1.2500 -0.5000
2.2500 -0.5000




Basic array information.

1. Size - Array dimensions

returns the sizes of each dimension of array X in a vector or matrix.
>> d = size(X)

>> [m,n] = size(X)

2. Length - Length of largest array dimension
returns the length of the largest array dimension in X.
>>L = length(X)

3. Isempty - Determine whether array is empty
returns logical 1 (true) if A is an empty array and logical O (false) otherwise.
>>TF = isempty(A)




Basic array information.

4. Max - Largest elements in array
returns the largest elements of A.

>>M = max(A)

5. Min - Smallest elements in array
returns the smallest elements of A.
>> M = min(A)

6. Sum - Sum of array elements
returns the sum of the elements of A along the first array dimension whose size does not equal 1.

>> S =sum(A)

7. Prod - Product of array elements
returns the product of the array elements of A.
>> B = prod(A)




Matrix functions - numerical linear algebra.

1. Rank - Rank of matrix
returns the number of singular values of A
>> k = rank(A)

2. Det - Matrix determinant
returns the determinant of square matrix A.
>>d = det(A)

3. Trace - Sum of diagonal elements
is the sum of the diagonal elements of the matrix A.
>> b = trace(A)

4. Inv - Matrix inverse
returns the inverse of the square matrix X.
>> Y =inv(X)




Matrix functions - numerical linear algebra.

5. Eig- Eigenvalues and eigenvectors
returns a column vector containing the eigenvalues of square matrix A.

>> e = eig(A)

6. Poly - Polynomial with specified roots

This MATLAB function where A is an n-by-n matrix returns an n+1 element row vector whose
elements are the coefficients of the characteristic polynomial -> det(Al — A).

>>p = poly(A)

7. Matrix transposed

>> A_transposed = A’




Polynomials

Representing polynomials:

Matlab software represents polynomials as row vectors containing coefficients ordered by
descending powers. For example, consider the equation:

p(x) =x3—-2x-5
To enter this polynomial into MATLAB, use:

>>p=[10-2-5]
p =
1 0 -2 -5
A coefficient of 0 indicates an intermediate power that is not present in the equation.

Evaluating polynomials
Polyval — the function evaluates polynomial at specified value. To evaluate p at p=5, use
>> polyval(p,5)
ans =
110




Polynomial derivative

Polyder - the function calculates the derivative of polynomials, polynomial products, and
polynomial quotients. The operands a, b, and p are vectors whose elements are the coefficients of a
polynomial in descending powers.

k = polyder(p) returns the derivative of the polynomial p.

k = polyder(a,b) returns the derivative of the product of the polynomials a and b.
Example:a) p1(x) = x3 —2x —5; b) p2(x) = (3x% + 6x + 9)(x? + 2x)

a)

>>pl=[10-2-5];

>> polyder(p1)

ans =

3 0 -2
b)
>>a=[369];
>> b=[1 2 0];
>> polyder(a,b)
ans =

12 36 42 18
This result represents the polynomial: 12x3 + 36x? + 42x + 18




Polynomial roots

Roots — the function solves polynomial equations of the form a,p™ + a,_p" 1+ -+ ap+ayg=0
Polynomial equations contain a single variable with nonnegative exponents.

This function returns the roots of the polynomial represented by p as a column vector.

Example: p = x3 —2x—5

>>p=[10-2-5];

>> roots(p)
ans =

2.0946 + 0.0000i
-1.0473 + 1.1359i
-1.0473 - 1.1359i




Residue - Convert between partial fraction expansion and ratio of two polynomials

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of a Partial Fraction Expansion of the ratio
of two polynomials, where the expansion is of the form

b(b)  bmp™ + by 1p™ 1 + -+ byp + by
a(p)  app™+ a1 p" 4+ ap +ag

The inputs to residue are vectors of coefficients of the polynomials:

b =[b,, by, ...by1 byl and a = [a,, a,_1 ... a4 ap]
The outputs are the residues r = [, 17,_1 ... 11], the poles p = [p,, Pn—1 ---P1], and the polynomial k.
>> b=1;

>>a=[15 6];

>> [r,p,k]=residue(b,a)

r=

-1.0000

1.0000

p =
-3.0000
-2.0000

[l




[b,a] = residue(r,p,k) converts the partial fraction expansion back to the ratio of two
polynomials and returns the coefficients in b and a.

Conv - Convolution and polynomial multiplication
returns the convolution of vectors u and v.
Example: (x + 2)(2x% + 4x + 1) = 2x3 + 8x% + 9x + 2
>> u=[1 2];
>>v=[241]
V=

2 4 1
>> conv(u,V)
ans =

2 8 9 2




General information

Managing the workspace

e who - List variables in workspace

e whos - List variables in workspace, with sizes and types

e clear - Remove items from workspace, freeing up system memory
>> clear all

>> clear namel ... nameN

e save - Save workspace variables to file

This function saves all variables from the current workspace in a MATLAB formatted binary file (MAT-file) called
filename.

>> save(filename)

>> save(filename,variables)

* load - Load variables from file into workspace
>> |oad(filename)

>> |oad(filename,variables)




Special values

* Ans - variable automatically when you specify no output argument.
* Pi-returns the floating-point number nearest the value of i. : 3.1415926535897...

* NaN - Not-a-Number. NaN returns the IEEE® arithmetic representation for Not-a-Number (NaN).
These values result from operations which have undefined numerical results.

These operations produce NaN:

O Any arithmetic operation on a NaN, such as sqrt(NaN)

O Addition or subtraction, such as magnitude subtraction of infinities as (+Inf)+(-Inf)
O Multiplication, such as 0*Inf

O Division, such as 0/0 and Inf/Inf

e Inf — Infinity - returns the arithmetic representation for positive infinity. Infinity values result from
operations like division by zero and overflow, which lead to results too large to represent as
conventional floating-point values.

* i, j-Imaginary unit.
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External description of dynamic systems

e Differential equation

e Transfer function ( time constants, poles and zeros of transfer
function)

* Impulse response
 Step response (relation between responses)
e P-Z map (pole-zeros configuration)

e Frequence response
1. Nyquist plot of transfer function
2. Bode plot of transfer function




Differential equation

e To develop differential equations for linear continuous-time systems,
if we do not know the internal structure, we apply an input (a step or
an impulse) and measure its response. Then we try do develop a
differential equation from the measured data.

* In the second approach, we must know the internal structure of a
system. Then we can apply physical laws, such Newton’s and Kirhoff’s
laws. This approach can be illustrated by examples.




Mechanical system

» System consists of a block with mass m connected to a wall by a spring (D) and a dashpot which
represents the shock absorber (B). The input is an external force F(t) applied to the block, and the
output is the distance x(t) measured from the equilibrium position. If F(t) = 0 then x(t) = 0.

» Strictly speaking the spring and dashpot is nonlinear, but it can be modeled as linear element with
spring constant D and dashpot constant B. The spring generates the force F(t) proportional to D.x(t),

the dashpot generates a viscous friction F;(t) proportional to B.x’(t). The Newton law of inertia of a
mass is F.,=m.x"(t).

D
0| _é@ﬁjﬁi_g

x(t)




Mechanical system

To move the block we must overcome the spring force, friction force and force of inertia.
Therefore we have:

F(t) = Fy(£) + Fp(t) + Fyp(£) = m ‘i’; +B Zf + Dx = mi(t) + Bx(t) + Dx(2)
F(t) ............. external force, the input of system
Fo(t) oo force implies acceleration, law of inertia
Fo(t) ... spring force
Fo(t) eonene... viscous friction force
X(t) oo distance from equilibrium position, the output of system

Description of dynamic behavior of systems can be often approached by ordinary differential equation
with time as independent variable. Linear system is described by linear differential equation.

©N0lo




Electrical circuit

Set up differential equations of electrical cicuit. Consider the voltage u(t) as input and current i(t)
as output, where R, is resistance, L inductance and C capacitance.

Ry, R, L, Care constants.

i (t) L i, (t)
- 000000 1

v

u(t)

2
o
| |
i
)




Electrical circuit

We use Kirchhoff’s voltage law to develop a differential equations of the network. (The directed

sum of the electrical potential around the loop must be zero.)

Loop I: u (t) — il(t) ) R1 +L %"‘ Rz (il(t) o iz(t))

Loopll: O zé.:[ L, (t) dt + R, (iz(t) _i1(t))




Hydraulic tanks

In chemical plants, it is often necessary to maintain the levels of liquids. A simplified model is shown

in figure:

g, 44, 9, = rates of the flow of liquid
A,, A, = areas of the cross-section of tanks
h,, h, = liquid levels

R,, R, =flow reaiatance, controlled by valves

It is assumed thet q, and q, are governed by g, =




The change of liquid are governed by

Aldhl — (Qi _ql)dt
A, dhz :(ql _qz)dt

or A, () = (g, —,)
Az hzl(t) — (ql - q2)

hl' (t) = (9, —a,)

hz’(t) _ (q1 B qz)

2

Hydraulic tanks




Transfer function

Transfer function is a mathematical representation of the relation between the input and output of

a linear time-invariant system.

Y(p) L{y(t) ) output

U(p) L{x(®)} input

The transfer function G(p) of a control system is defined as the ratio of the Laplace transform of the output

Definition formula of transfer function: G( p) —

variable Y(p) to the Laplace transform of the input variable U(p) assuming all initial conditions as zero.

U(p) 6(0) Y(p)




Transfer function of mechanical system

In our case the input signal is the change of external force F(t) and the response (output) is the
change of the position of the block x(t). Assuming the initial conditions as zero and taking Laplace

transform on both sides of equation (1), the following equations are obtained:

d?*x dx
_ (1)
F(t)—mdt2 +Bdt+Dx

F(p)=m-p*X(p)+B-pX(p)+D-X(p)

F(p)=X(p)-(m-p*>+B-p+D)

_X(p) _ 1
p)= F(p) m-p?+B-p+D




Transfer function of electrical system

Consider the voltage u(t) as input and current i,(t) as output. Taking Laplace transform on both
sides of equation (2) and (3), the following equations are obtained:

u(t)=1,(t)-R, + L%+ R, (il(t)—iz(t)) (2)

0= éj i, (t) dt +R, (i, (1) — (1)) )

U@P) =1,(p)-R, +L-p-1,(p) + R, (1,(p) = 1,(p))

1
o=p—clz<p>+R2(lz(p>—ll<p>)
|1(p) - p-CR2+1

Transfer function:  G(p) = =—
Up) p°-LR,C+p-(R,R,C+L)+R,+R,




Poles and zeros of transfer function

We can now determine the transfer function more generally.

For a differential equation:

a,ym+a, v+ . +a,yl+a,y=b, u™ +b_ um+ . +b.u®+byu

With zero initial condition y™1) = y(n-2) =y =0 and uf") = y"2) =y =0 att=0.

When y is output and u is input, the corresponding transform function can be expressed in the form

of a quotient of polynomials in the following form:

Y(p) — bm pm +bm—1 pm_l+"'+blp+b0 — B(p)
U(p) a,p"+a,_,p" +..+ap+a, A(p)

Where A(p) is called characteristic polynomial.

G(p) =

For physically realistic processes the highest power of p in the numerator is either equal or less then
that of the denominator: N =2 M

©N0lo




Poles and zeros of transfer function

Conclusion: G(p) contains information of the dynamic behavior of a model as

represented by the differential equation.

Denominator of G(p) is called the characteristic polynomial of the diff. equation.
The roots of the characteristic equation A(p) = 0 are called the poles of G(p).
The roots of the numerator of G(p): B(p) =0 are called the zeros of G(p).

The graphical symbol for pole is X and for zero O. The said symbols are used when

poles and zeros are to be shown on a real and imaginary axes (p-plane)




Transfer function in pole-zero form

We can factor the transfer function into so-called pole-zero form.

G(p) = B(p) —(bm] (p-2)(p-2,).(p-2,)

Ap) \a,)(p-p)(p—p,)Ap-py)
When zeros are denoted z,, z,, .......... zZ,
poles are denoted p,, p,, ......... P,

If all roots are real, we can factor the transfer function into so-called time-constant form.

G(p):w: b0 (Tap+1)(z-bp+1)"'(z-mp+l)
P(p) \ ) (zp+1)(z,p+1).(z,p+1)

Where K :(Z—Oj is known as the gain factor of transfer function.
(0]

T, are called the time constants of the system




We can also use the time-constant notation for express the poles:

1 1 1
plz__’ p2:__’ pn:__

7 7, T
The poles determine qualitatively the dynamic behavior of the model of differential
equitation.
The term “roots of the characteristic equation” is used interchangeably with “ poles

of transfer function”.

Conclusion: The transfer function of a system is completely specified in term of its

poles and zeros and the gain factor.

©N0lo




Procedure for determining the transfer function of a control
system.

 Formulate the differential equations for the system.

e Take the L-transform of the system equations, assuming the initial
conditions as zero.

e Specify the system output and the input.

» Take the ratio of the Laplace transform of the output and the Laplace
transform of the input. The obtained ratio is the required transfer
function.




Problems

For the transfer function plot the poles and zeros in p-plane.

1 (p?+4)1+25p)

G(pyZE(pZ+ZXL+Q5p)

2. The dynamic system is done by differential equation. Find the transfer function G(p).

S5y"'-2y'+3y =u"+4u'+4u

3. Find zeros and poles of dynamic system which are done by transfer function. Plot it in p-plane.

p°+4p+4

G(p) =
(P) 5p° -2p+3




Responses of the system

Impulse response — is the inverse Laplace transform of the output g(t), if the input is specified
as unit impulse (Dirac impulse) 9 (t)

ui)=0() = U(p)=1
(

G(p)="PL o v(p)=G(p)U(p)=G(p)-L
U (p)
Y(p)=G(p)

g(t)=L"{G(p)}

Step response —is the inverse Laplace transform of the output h(t), if the input is specified as
unit step (Heaviside function)

it =1(t) = U(p)=%

6(p) = = Y(p)=H(p) =GRV (P) = G(p)—
(p) p

y(t) = h(t) = Ll{e( p)%}




Responses of the system

4. Response, if the input is ramp function u(t)=t.

)=t = U(p)=—

p2
D v -eu -6

y()= L-l{e(p)iz}
P

G =G0

5. Response, if the input is harmonic function.

w
p2+ 2
= Y(p)=G(pU(p)=G(p)-A ;
P>+

)

ut)=A-sinet = U(p)=A

6(p) = 2 P)

Y (
U(p)
y(t) = Ll{G(D) A




Solved example

1

System has the transfer function: G(p)=———
p°+5p+6

Compute the impulse response g(t) in time domain.

Compute the step response H(p) and in time domain h(t).

Compute steady-state value (final value) for both responses using the limits theorems.
Compute step response h(t) from g(t) and impulse response g(t) from h(t).

Simulate the response using Matlab and Matlab-Simulink.

e e

1. Impulse response:

1 1 1 1
= LG — L — L1 _ 1 _ a3t a2t
g(t)=L"{G(p) =L { p2+5p+6} L {(p+3)(p+2)} L {(p+3)+(p+2)} et +e

2. Step response:

1 1 1]
- 1 ~ ~ 1 a D) a 1 1 1
h(t)=L1{G(p)-—}=L1{H(p)}=L1{ }: o8 2 el Lloe 1ol
p (p?+5p+6)p (p+3) (p+2) p[ 3 2 6




3. Final value of the impulse response

O(t =) =lim p-G(p) =l p—y— =0
Verification in time domain: !;ILTO]O g(t)=0
4. Final value of the step response
n(t > ) = lim p- H(p) = lim p 1 1
P +5p+6)p 6

Verification in time domain:  |[|m h(t) —
P—

iy
1
6




5. Relation between impulse response and step response:

t t t
h(t)=jg(t)dt:j(—e3t+eZt)dt:{%—e?’t—ieﬂ -%_est_iem 1.1
0

— Tz
0 2 . 2
g(t) = S - d (E_est —le‘Zt +lj _ et _g 2
dt dt{3 2 6

6. Simulation using Matlab.

Impulse Response
0.16 , .

Step Response

Amplitude

L L L L L L
45 5 0 05 1 15 2 2.5 3 35

Time (sec)

Time (sec)




Simulation of the step response using Simulink:

FEX
SE LLL AEE @A T
.1
- - []
L4 F o

Step Transfer Fon Scope

Time offset. 0O




Frequency response — Nyquist plot

Procedure for mapping G(p) from p-plane to G(jw)-plane.
For plotting G(jw) the independent variable p is varied on the entire imaginary axis from w=+0 to w=+c°.

The plot variation from w = -0 to w = - == use vertical image of the plot from w =+0 to w = +oo,

The examples given below illustrates the process of Nyquist plot.

G0y — 100

P pZ+p+20
100

G(jw) =

(o) (Jw)? +jw + 20

| 100 100 100 100 (20 — w?) + jw
GU0) = T w20 —of1jot20 20— tje  (20—0)+jo (20=wd) tjo
100(20 — w?) — 100jw
=400 — 3902 + wt

(20 — w?) —w
Re{G(iw)} = . 100 Im{G (i)} = . 100
elG(w)} = 200 3907 1 o m{GU0)} = 00 3907 + o




Re{G(jw)} Im{G(jw)}
5 0

5.25

6.15

8.46

12.5

0

-10

-5.48

-2.2

-1.23

Frequency response — Nyquist plot

-0.28

-0.77

-2.31

-12.5

-22

-10

-2.05

-0.4

-0.15

Imaginary Axis

25

Nyquist Diagram

Real Axis




Frequency response: Bode plot (Logarithmic plot)

Bode plot is a graph consisting of two parts:
a) Magnitude of G(jw) in decibel ie. 20log,,| G(jw)| versus log,,w

b) Phase angle of G(jw) versus log,,w

1. Graphs for the gain term K
a) Magnitude: K(db)=20 log,,K

b) Phase angle is always zero: @(w) =0




2) Graphs for the term G(jw) =

a) Magnitude in decibel
b) Phase angle:

+60 db

+40 db
+20 db

itude

0 db

Magn

—-20 db
—40 db

Frequency response: Bode plot (Logarithmic plot)

1
GV

p(w) = —90°

't

- 60db/d
- 40d b/d

A(db) = —20N log,y w

-90°

Phase Angle
i
—_—
S

0.1

100

10

Yye

11
o =




Frequency response: Bode plot (Logarithmic plot)

3) Graphs for the term G(w) =1+ jwT)

a) The magnitude in decibel is given:  A(db) = 201log,,|(1 + jwT)| =20log,+/ 1 + w?T?
Consider following two cases:

i) wT<<1, wT is negligible as compared to 1:  A(db) = 201log,|(1 + jwT)| =20log;, 1 = 0 db
i) wT>>1, 1is negligible as compared to wT:

A(db) == 2010g10|(1 +](1)T)| = 2010g10 Y\ (1)2T2 == 20 10g10 (,()T == ZOlOglo(l) _20 loglo(l/T)
Hence, the two graphs intersect on 0db axis at w=1/T, for case ii) the graph has a slope of 20db/decade.

MAGNITUDE
B
o
Q
=2

|0
20 db} 208
0 db | , : >
0.1 1 oy T 100 o




Frequency response: Bode plot (Logarithmic plot)

b) The phase angle:  ¢(w) = arctan (a)TT>

i)  Atverylow frequencies wT is very small: ¢=arctan(0) = 0°
i) At w=1/T: @=arctan(1/T-1)=arctan(1)=45 °

iii) At very high frequencies wT is very large: @=arctan(e=) = 90°

I

+
©O
o

o

+ 45°

Phase Angle

Oo = 1 = .
0.1 .




Frequency response: Bode plot (Logarithmic plot)

N 1
4. GraphS fOr term G(]a)) = (1+—ij)
a) The magnitude in decibel:

Consider following two cases: A(db) = 201logy,

1 1
(1+—](1)T)‘ = 2010g10 <m> = —ZOIOglo \V 1+ (UZTZ

i) wT<<1, wTis negligible as compared to 1:  4(dp) = 2010g,,

1
i) wT>>1, 1is negligible as compared to wT:

A(db) = 2010g10

1
770D =~ —20log oV w?T? = —201log,o wT = —201log,o w + 201log;, (—)

T

Hence, the two graphs intersect on 0db axis at w=1/T, for case ii) the graph has a slope of -20db/decade.

i
0.1 W ==
0.db - : Aot s e
QO
- —20dbt} ¥
2 g
) g
® -40db}
b
- 60db}
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Frequency response: Bode plot (Logarithmic plot)

wT
b) The phase angle: ¢ (w) = —arctan (T)

i)  Atverylow frequencies wT is very small: ¢ = - arctan(0) = 0°
i) Atw=1/T: @=arctan(1/T-1)=arctan(1)=-45°

iii) At very high frequencies wT is very large: @=arctan(ee) = - 90°

o
o

Phase Angle

| |
© &
S O
la ] o




Frequency response: Bode plot (Logarithmic plot)

For exact plot the magnitude in decibel for the term (1+jwT) at w=1/T is 3db. Similarly the maximum
error for the term 1/ (1+jwT) is -3db. An error of +3 db is permissible.

Exact and asymptotic (approximate) plots for the terms G (jw) = (1 + jwT) and

1
Cjw) =————=

A
c0atd (1+jwT)

40 db |

20db|

0db =+

MAGNITUDE

i
N
(=
S

~40db}t

-60db |




Bode plot: Solved example

50
Sketch the Bode plot for transfer function: G(p) =
P D= ne+2
Solution:
o 50/2
e put p=jw and rewrite the transfer function in Bode form: Gjw) = (jw + D(0.5jw + 1)
e Time constants: T, =1 T,=05
e Magnitude in decibel: |G(jw)|gp = 201og, 25 — 201ogoljw + 1] — 201og;,0.5jw + 1]
* |nitial magnitude: Agp = 201logy025 =279
: 1
e Corner frequency of the asymptotic plot: w;==—=1
1
1
wy = T—Z =2

Phase angel: ¢(w) = —arctan(w) — arctan(0.5w)




Magnitude (dB)

Phase (deg)

Bode plot ¢ =

Bode Diagram

Frequency (rad/s)

50

(p+D(p+2)

.
- =
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Types of controlled systems

We use only first- and second-order differential equation because:
e we are working strictly with linearized systems

e any function can be “broken up” into first-order term or terms
with complex roots can be combined together to form a second-
order term

e with higher-order models we can construct approximate
reduced-order models based on the identification of dominant
poles
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1. The zero-order system

It has no own dynamic.

Differential equation: y(t) = k u(t)
(The output is an intensified input.)

Y (p)

Transfer function:  G(p) =——+%=

U(p)




2. The first order system
Differential equation: 1 - Y'(t)+ y(t) =k -u(t)

Where T is time constant and k is steady-state gain

K B b,
Tp+1 ap+a,

Transfer function: G(p) =

Time constant: T

1
Step response:  h(t) = Ll{ K 1}: L™ —K +5>: K[l—e Tt)
Tp+1p p




2. The first order system

Steady state value of step response: h(t > o) =|impr-H(pP)=]im

p—0 p—0 Tp+1
K
] 4 K ST K -t
. t)=L"G LN — =L l=—eT
Impulse response: 9(t) 1G(p)} {Tp+1} p+1> :
. T

Steady state value of impulse response: g(t = ) =|jmp-G(p) =0

p—0
Relation between step and impulse response:

!

gt)=h'(tt)= [K Ke%tj = +K e‘it.1

— |

t kL K ) 1,
h(t) = tYdt=|— e Td’[———T-eT =—KeT +K
(t) !g() !T {T( ) }

=K




Step response of a first order transfer function

K
G =
() Tp+1

The effect of changing the steady-state gain K. All curves have T=3.

Amplitude

Step Responze

Titme (=zec)

K is changing. At the
time when t=T (time
constant), the step
response reaches 63%
of the steady-state
value.




Amplitude

Step response of a first order transfer function

K
G =
(P) Tp+1

The effect of changing the time constant T. All curves have K=2.

2

1.8

1.6

14 F

1.2 F

1

0.g

0.6

04

nz2

Step Responze

Time (zec)

System with large time
constant gets settled
more slowly than system
with small time constant.




At the time when t =T the step response reaches only 63.2%
of the steady-state value K.

System with a large time constant gets settled more slowly.
System with a small time constant gets settled more quickly.

Time T 2T 3T 4T oT

Response| 63.2% | 86.5% | 95.0% | 98.2% | 99.3%




3. The second order system
It represents oscillatory behavior.

Differential equation:

a,y"(t)+a,y'(t)+a,y =byu(t)
Is usually rearranged to take the forms:
Ty Y O+28Toy" )+ y(t) = Ku(t)
V' (1) +2 @, y' (1) + @ Y(t) =K oy u(t)

or

The corresponding transfer function is:

K or K o

G - =
(P) TS p?+2&T,p+1 P°+2¢lw, p+o’




The second order system

System steady-state gain: K= 2_0
0

Time constant: T>0

: _ a, T, 1
Natural period of oscillation: Tj =—%=-2=—
a, 1 o

Natural inhered (undamped) frequency: o, )0, o, _1
0

Damping ratio (damping coefficient) €:

a, 26w, 2
26Ty=—+= 52 - 68:2951-0

aO a)n a)n




The effect of different values of ¢ on system
response:

¢ =0 - undamped oscillating system:

K
1 . G =
Transfer function: (p) T2p2 +1
: . : 1 1
Two purely imaginary conjugated poles: P, = 1z == T
0 0

Frequency of oscillation: w,=1/T,

Step response:

Amplitude




The effect of different values of ¢ on system
response:

¢ (0;1) > damped oscillating system: two complex conjugated poles

4 :
- 01 G = =-0,05+0,491
a) For &£=0, > Gy(p) 407 +2-01-2 p+1 P12
and T,=2 A
a) For¢=05 - G,(p)= 107 +2.052 041 p,, =—0,25+0,433i
and T, =2 prtetoep
Step response: [ """ i

____________________________________________________________________




The effect of different values of ¢ on system
response:

¢€=1 - damped non oscillating system on the limit of periodicity:

Two repeating poles p,, = -1/T,

_ 4
Transfer function: G(p)=-—; =— p,, =—05
4p°+2-1-2p+1 p°+p+1/4 ’
Step response: . , . . _Step Response
R __________________________ i




The effect of different values of £ on system
response:

&E>1 - overdamped non oscillating system:

K p, =—1,86

Transfer function: G(p) = —
(P) 4p2—|—2-2-2p+1 p,=—0,13

Two distinct real poles.

Step Responze

Step response: .

23

2

Amplitude

1.3

1

0.3 H




Time-domain features of damped oscillating step

Amplitude

response

Step Response

1 1 1 1 1 1 1 1
Tr Tp 10 20 30 40 =0 =] ']; a0

a) Overshoot

b) T, — peak time

c) T, —rise time

d) T — period of oscillation
e) T, - settling time




Higher-order systems

Step responses of higher-order Typical response of higher order-system:
systems:n=1,2,3,4,5

T T

u n

* T,—dead time, the intersection of the tangent line of a step response at
the flex point and the time axis

T -—rise time, the intersection of the tangent line of a step response at the
flex point and the steady state value
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Higher-order system’s approximation

Approximation of non-oscillating systems :

1. Time constant are similar - serial connection of n identical
first-order systems with the same time constant: T,=T,=... =T,

For n-order system:

o) = — 5 ke L

(Tp+1) (Tp+1) (Tp+1)" (Tp+1)




Higher-order system’s approximation

Approximation of non-oscillating systems :

1. Time constants with large difference: T,>>T,>>..>> T

n

a) First-order approximation with dead-time function:

G(p) =

Where: T=T_, the largest time constant
T, :ZTi iZdominant

b) Second-order approximation with dead-time function:

max1’ 7-2= Tmaxz

Ty = Zn:Ti

21,2

Ke™? Where T,=
G(p) = 1
O = Ep1m )




Problem solved

Find the simplest lower-order approximation of the following transfer

function:

3
O01lp+D)O5p+)(p+D)Bp+1)

G(p) =

The largest time constant: T=3,
The corresponding dominant pole: p =-1/3
Transportdelay: T, = >T,=0,1+0,5+1 =1,

3gHoP

We may approximate as:  G(p) = m
P+




Transport delay approximation

A time delay is also called transport delay or dead time or transport lag.
To handle the time delay we use so-called Pade’ approximation which
expresses the function as a ratio of two polynomials.

1-2p
The simplest is the first-order Pade’ approximation: e P = _|_2
1+2°' p

tp_ 1o P 6T p+12
T -p°+6T,p+12

The second-order Pade’ approximation:




Problem solved

Use the first order Pade’ app. To plot the unit-step response for the first order
system with dead-time function.

_3p

e
G =
(P) 10p+1
T 3
1-'dp 1-°
Solution: e TP _ o P __ 2 P _—1o5p+1
T 3 1,5p+1
1+-4p 1+°> ’
+ 5 p +2 p
1 -15p+1
G(p) = P

10p+1 15p+1




Comparison: Time delay approximation and Pade’

3

approximation

25 4E AR+ Hav

Transfer Fon

b
—» R | — —
ci |
Stepi Transport
Delay Td=1,6 Transfer Fan
3
i}
BsL+dat
Transport
Stepz Delay! Td=0,6 Transfer Fen2
-0.8=+1 3
— -
0.8=+1 A+
Step3

First order Pade” approx

2 Bist-0 s+ 12

_b. —_
J 2 FEisL+0 B2

Transfer Fon3

3

|

Tran=fer Fond
Second order Pade” ap

Transter FenG

Lk

=) Scope

-Ascope
2B PR ABEB| B A &

H©

BY

SA
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State-space Representation of Controlled
Dynamic Systems
(Internal Description)




Introduction

Transfer function describes only the relationship between external variables:
* Input variables U(p)

e Qutput variables Y(p)

In this approach of analysis initial conditions are considered zero.

State-space representation describes systems using input, output and, in addition, internal (state)
variables. The analysis of a control system using state-space approach carried out:

1) Intime domain considered non-zero initial conditions.

2) The high-order differential equation is now written as a set of first differential equations by
selecting suitable state variables wherein first order derivative terms are arranged.

3) For multiple-input multiple output systems, for non-linear systems the analysis of control
systems is more adequate and more suitable.

4) Therefore the state-space description is more general than transfer function desription.
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State-space representation - examples

D

1. Mechanical system F(t) /

. 000000 Z

B
x(t)
. . . d*x dx y .
Differential Equation: F(t) = F,,(t) + Fg(t) + Fp(t) =m - 72 + B - I +D-x=m-%(t)+B-x(t)+D-x(t)
2
Can be rearanged in the following form: a’x - B, dx _ B 1 Ft) = a(t)=- B, V) - —-x (1) -= F(t)
d° mdt m m m

For a second order system we need 2 state variables x,(t) and x,(t).
Selection of variables — it is recommended, that they are physically measurable.
As state variables are selected: position: x,(t) = x(t)

velocity: x,(t) = v(t)




State-space representation - examples

The representation given by these equations is known as state space representation of the system.
The dynamic behaviour of the system can be determined by two variables x,(t) = x(t) and x,(t) = v(t).
In any instant of time t > t,, the state of the system is given by the values of x,(t) and x,(t), therefore

X,(t) and x,(t) are called state variables.

According to the system’s description, the relation between the state variables is defined by this

first order differential equations:
x(t) = v(t)
1
v(t) = a(t) = E(F(t) —B-v(t) — D -x(t))
y(t) = x(t)

The state variable x(t) is simultaneously considered to be the output variable of the system.




State-space representation - examples

The state space model, in other words a set of differential equations, can be written in a standard

matrix form:
) 0 1
x(t)] x(t)
L’?(t) = —% —% lv(t) P

y© =11 0[]+ 101 Fo

A general representation of a set of state equation can be expressed in the following form:
x(t) =A-x(t) + B - u(t)

y(t)=C-x(t) + D - u(t)




Where:

X (is the(:jsta)lte vector (n x 1), or simply the state; the time derivate is denoted by a dot above.
overaot

u is the input, or control vector

y is the output

A is the system (plant) matrix, matrix of dynamics of the system, the eigenvalues of A are the poles
of transfer function

B is the matrix of inputs

is the matrix of outputs

D is the input output coupling matrix, the matrix of the direct influence of the input on the output.
D is usually zero.

(@]

When we discuss single-input single-output models (SISO):
uy are scalar variables

B is a column vector (nx1)

C is a row vector (1 x n)

A is a square matrix (n x n)

D is a scalar




State-space representation - examples

The block diagram for state equations is shown in the following figure.
x(t)=A-x(t) + B-u(t

y(t)=C-x(t) + D - u(t)

Dhu




Transfer function decomposition

e The process of obtaining state model from a transfer function is called transfer function
decomposition.

e The transfer function decomposition is carried out using different methods. Therefore the
corresponding state models of one transfer function can be written in different forms.

* It is demonstrated on the following system, where the transfer function is given in the following
forms:

Y(p) 2p+1
U(p) p°+9p°+26p+24

G(p) =

1. Frobenius’ canonical form of a state space description — Direct decomposition

2. Jordan’s canonical form of a state space description — Parallel decomposition

©N0lo




Frobenius’ canonical form of a state space description

Y(p) 2p+1
U(p) p°+9p°+26p+24

G(p) =

The corresponding differential equation for the transfer function above is of third order; therefore

we need three state variables. The state equations are chosen below:

x1(8) = x,(¢)
x5 (8) = x3(t)
xX3(t) = —24x,(t) —26x, (t) —9x3 (t) + u(t)

And the outputis: y(t) = x,(t) + 2x,(t)




Frobenius’ canonical form of state space description

The state model in matrix form is:

X1 (1) 0 1 0 x1(t) 0
X, (t) =[ 0 0 1]- x, ()| + 0] - u(t)
o] =24 —26 -9l |x )| L1
x4 (t)
y@®) =[1 2 0]-]|x(t)
x3(t)
0 1 0 0|
A= 0 0 1| B=|0|] C=f 20  0=0]




Frobenius’ canonical form of state space description

To obtain the block diagram we need three integrators and several summing junctions. The output

of each integrator is assigned to a state variable. 2p+1

Block diagram of Frobenius’ form in relation to transfer function: G(p) = 0% +9p? +26p+ 24

—

X2 | %1 xl ™+ [

u %3 q X3 X2 1 q

Integrator Integratorz Integratorz

e
_24}.

-0




Jordan’s canonical form of state space description

Jordan’s decomposition is carried out by splitting the given transfer function into partial fraction.

Y 2p+1 1/2 ~1 1/2
opy=Y® o 2 _u2 . -1,
U(p) p°+9p°+26p+24 p+2 p+3 p+4

We define the state variables x,, x, x;as follows

X,(p) 1 . _

Up) pe2 4 () + 250 =u() () ==2x,(f)+u(1)
X.(p) 1 | ,

U(;f) :p+3 = X5 () +3x,(2) = u(?) N xX,(t) = —3.1:'2 (T)-I—H(f)
X,(p)_ 1 )+ 4n () = D) x3(t) = —4;):'3 (f) +u(1‘)

Ulp) p+4




Jordan’s canonical form of state space description

and output variable y(t) as follows:

Y(p) 1 X/(p) X,(p) . 1 X,(p) 1 1
G(p)= 2 =21\ Rk, = AaAE) Y(p)==X,(p)-X, =X,
(p) U(p) 2 U(p) U(p)+2U(p) = Y(p) 5 (p) (|O)+2 (p)
1 1
y(t) = Exl(t) — X(t) "‘Exa (t) - s (t)_ "5 0 01 Tx1 T
xnM)|= 0 -3 0 X
__i'g(t)_ 0 0 —-4| |«x

—

b2
_|_
[a—

)
The state model in matrix form is:

L
[—

X

—

y=[1/2 -1 1/2]

-2 0 0 1
A= 0 -3 0 B=i c=[/2 -1 1/2]
0 0 -4 1

-

S

R




Jordan’s canonical form of state space description

Block diagram in Jordan form leads to the parallel connection of the basic elements:

X
1’“@*

Zain

¥"F
E{++
-
i |
&a
&

1

Step -
Add1 Integrator1 Gaini Add3 Scope

=
vy
+ +
R
¥
| —
X
+ + +
-
¥

P+ X 3
+ 5 L_‘_,
2 Gain2




Conclusion

* There is no unique representation of a state space model.
e The characteristic polynomials of both matrixes A are identical .

* The eigenvalues of matrixes A are the poles of the transfer function.
They are identical.

* It means, that dynamic behavior in both cases is identical.

e |t is a confirmation, that different mathematical techniques provide
the same information.




Transfer function decomposition in Matlab.

* ss— state -space description
e zf —transfer function description

e zp — zero-pole description

Matlab conversion:
e [A,B,C,D] = tf2ss(num,den)
e [A,B,C,D] = zp2ss(zero,pole)

e [num,den] = ss2tf(A,B,C,D)

e [num,den] = zp2tf(zero,pole)




Problem solved

Derive the state-space representation in Frobenius form for the system given by the transfer function.

4p® +3p+1
2p° +3p+5

G(p) =

Solution for m = n:

’ ~-3p- ~3/2p-9/2
1. Order of numerator decreasing: G(p):4p2+3er1 = 2+ 23p d =2+ — /2p -9/
2p-+3p+5 2p°+3p+5 p +3/2p+5/2

2. State equations: X, (t) = x,

: 5 3
x,(t) = 5% T on +u

y(t) =—9x, —3x, +2u

3. State matrixes: _{ 0 1 }

o 3/ B:m C=[-9/2 -3/2] D=[2]

1




Problem solved

4. State diagram:

Zain
u [+ Y
- W X w x [ -
5 s
Step - L~ Add Scope
Add Integrator Integr ator Gain

5. Matrix D=[2] represents the direct connection from the input to the output.




Problems

Obtain state equations, state matrixes and state diagram in Frobenius form for differential
equation.

2
d2y+3dy+4y d—u+3u
dt dt dt

Obtain the state model in Jordan’s form using parallel decomposition method.

Y(p) _ p+3
U(p) (p+1)-(p+2)

G(p)




Relation of state space model to transfer function.

The state equation of a system are given below:
X (t) = Ax + Bu
y(t) = Cx + Du
Taking Laplace transform of the both sides:
p-X(p)—-x(0)=A-X(p)+B-u(p)
Y(p)=C-X(p)+D-U(p)
As per definition of transfer function x(0) = O:
X(p)=(pl —=A)"-B-U(p) where
®(p)=(pl —A)™" iscalled state —transition matrix
Substituting X(p) in Y(p):
Y(p)=[c-(p - A)*-B+D]-U(p)
where
G(p)=[c-(pl - A)*-B+D] if D=0
G(p)=C-(pl -A)"-B Is transfer function matrix




Problems

1. Derive the state transition matrix and transfer function from the state equations.

[xl(r)] 1 0 ] [xl] H
= + u
BL®| [0 —4]]x | 1

- x]_
vy =[1/3 2/3]
X

~

2. Derive the state transition matrix from the state equations.

G -5 0 || x N 4 0,21 u,
L[ | 2 —4|lx,| [0 02]u,




Revision questions

 Main differences between external and internal description of a
system.

 Which forms of internal description do you know?

 Write the state-space description in general form.

e What is x.

 What is A.

* When the matrix D # 0.

* How can we calculate poles of the system from matrix A.

e How we can calculate transfer function from matrix A,B,C,D.
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Algebra of block diagrams

We use the block diagram to represent transfer function and lines for
unidirectional information transmission.

1. Simple block:

u(t) y(t)
—>{ G(p) —> Y(p)=6(p) U(p)

2. Serial connection of systems:

X, X (p) y(t)
i};-- G,(p) e) G,(p) ——>x G;(p) —>

Y(p) = G;(p) X;(p) = G;5(p)G,(p) X;(p) = G5(p)G,(p)G,(p) U(p)
Total transfer function: G(p) = G5(p)G,(p)G,(p)

Transfer function of the serial connection is multiplying of individual transfer
functions.
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Algebra of block diagrams

3. Parallel connection of systems:

X, (p)

ﬁ' G1{p}

u(t) | X (p)
G,(p) Y(p)

X.(p)

—— G;(p)

Y(p) = X;(p) + X;(p) + X5(p) = G1(p) U(p) + G,(p) U(p) + G5(p)U(p) =

(G1(p) + G,(p) + G5(p)) U(p)
Total transfer function: G(p) = G,(p) + G,(p) + G5(p)

Total transfer function of the parallel connection is the sum of individual
transfer function.




Algebra of block diagrams

4. Feedback connection of systems:

Y(p)
Wil a0 ST p)
Y.(p) o)

Y(p) = G4(p) U(p) = G1(p)G,(p)E(p) = G1(p)G,(p) (W(p) — Y;(p)) =
G,(p) G,(p) W(p) — G1(p) G,(p) Gs(p) Y3(p)
Y(p) [ 1+ G,(p) G,(p) G5(p) ] = G4(p) G,(p) W(p)

G1(p)G2(p)
1+ G,(0)G(p)Ga(p) P

Y(p) =

G1(p)G2(p)
1+ G1(p)G2(p)Gs(p)

Total transfer function: G(p) =




Mason Rule

* The important observation is that we close a negative-feedback loop, the
numerator consist of the product of all transfer functions along the
forward path.

e The denominator is 1 plus the product of all the transfer functions in the
entire feedback loop ( i.e., both forward and feedback paths.) The
denominator is also the characteristic polynomial of the closed-loop
system.

e If we have positive feedback, the sign in the denominator is minus.




Problems

(1)

w(t) y(t)
G] G] e

(2)

v(t)
wit) 50 é 0,2 1
—» > —»r
5_ g_ 0,1p+1 0,5p+1 P




Problems

(3)
w (1) e(t) u.(t) Y (t)
—%®—H R, L S1 2
" t
- R2 Lo
(4)

+
w@® HeO——"" 9 . v
RI ﬁ?— RE ‘,* 51 2 S 5 5




(5)

(6)

i

Problems

wi(t) c :)e{t) 5

y O

Vy ':t) >I S
} =
R,
ULO + +
u,(0) u( = + §§ )‘}(*)
+
S
et
Ry
- Y,




Problems

(8)




Problems

(10)




Problems

(11)




Problems

(13)




1)

2)

3)

Solutions

_ G1Gy
G(p) =
1+G1GRrq
50 . 0,2 l
. (0,1p+1) (0,5p+1) p _
G(p) - 1+ 50 0,2 1 50 0,2 -

_ 10

© 0,05p+0,6p+p(1+10GRy)+10

_ R1515;+R;,S,
W ™ 14R,S;S,+R,S,

(0,1p+1) (0,5p+1)'5+(0,1p+1) ' (0,5p+1)'GR2

_ S2

V' 14R.S:S,+R,S,




4)

5)

6)

7)

8)

Solutions

R1R7515;
Gy =
R.S R,S+S
GW — 1 GV — 2 |4
1+R,S 1+R4S
B R{S+R{MRyS Co = S
W ™ 14R,S+SRp+R{MRyS V' 14R;S+SRp+R{MRyS

G1Gy
14+HyG1Gy+GyGeHy+G1GyGyGgHy+G1GyGaGeHy

. G1G+G43
" 14G;GyH{+G5+G




Solutions

G,G3+G41G
9) G — 2493 192
1+6263H1
G>,G3+G1 G
10) — 2493 192
1+G,Hq
G,G1+G
11) G _ 2491 3

" 14+G,G,H,+G{H,+G3H,
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Analysis of Single-loop
Control System




Analysis of Single-loop Control System

Control loop consists of two basic objects:

e Controlled system

Controlling system (controller, regulator, actuator)

* In a control system the time response is improved by adjusting the feedback
parameters.

e The controlled system and the controlling system are mutually interacted,
they created a closed control loop.

 Any deviation of the output from the reference input is detected by an
error detector. The error thus detected is used as actuating signal for
control action through a controller. The proportional control action and
types of control actions used for improving transient and steady state
response of a control system.
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z(t)

(i)

wii) e) [ i -
O G, (p) G.(p) >

(C [ o) - transfer function of the controlled system, system

C <] transfer function of the controller

w(t) ... the system input is the load input (or set point or

reference), command variable, our desired steady-state
value of the output signal

Z(t) .......... the other system input, disturbance, that can affect our
closed-loop response

e(t) ....... control deviation, error, difference between desired
value and controlled value

u(t) ... actuating signal
y(t) ... controlled value, output of control system




(i)

e : vit)
“L?i‘ Gr {,l]} ult) -é - Gg{:l]) -

e Control transfer function: G,

_Y(p) _ G, (p)G(p)
W(p) 1+G,(p)G,(p)

G, (p) =Y (p) =G, (p)W(p)

e Disturbance transfer function: G,

Y(p) _ G, (p)
Z(p) 1+G,(p) G.(p)

* Deviation transfer function: G,

_Y() _ 1
E(p) 1+G,(p) G,(p)

G,(p)= = Y(p)=G,(p) Z(p)

G.(p) = E(p) = G.(p) W(p)




Problem solved

Determine the control transfer function G, error transfer function G, and
disturbance transfer function G,. Transfer functions of the system and
controller are given.

3
= G _
3 1
G, (p)= 2 PIG(P) _ (p+3) (p+4)-(p+1) _ 3
e e g, 3 1 (0+3) (p+4)-(p+1)+3
(p+3) (p+4)-(p+1)

G, (p) = 1 _ 1 _ (p+1)-(p+4)-(p+1)
e 1+G,(p)G,(p) 4, 3 1 (p+3)-(p+4)-(p+1)+3
(p+3) (p+4)-(p+2)

1

G, (p =P _ (p+4)-(p+1) (p+3)
U e me(m 4, 3] (p+3)-(p+4)-(p+1)+3

(p+3) (p+4)-(p+1)




Problem solved

Determine steady state value of

1
G,(p) = G, (p) =
a) the output and :(P) (p+aYp+1) (p) (p+3)
b) of the error signal.
Assume the reference input w(t)=1 and deviation input z(t)=1. Transfer
functions of the system and controller are given. Apply final theorem of Laplace

transform.

Y() G, (p)G.(P)

)= (0 T 16, (pG(p) | P =Cu(PWIR)

a1) - N 3 11
3/(00)—|Im|°'Y(|O)_I|mlo'(p+3)-(p+4)-(|0+1)+3'6_g

p—0 p—0

_Y( __ G.(p) _
a2) C.(P) =30y " 176, (me.(p = (P =G (P Z(P)

TR p+3 At
e =lime YO =m0 ) (peD 3 p 5
b G (py= E(P) _ 1 E(p)=G.(p)W
) P W) " 1re e, m TP TSP
)=l E(o) < [immp. P3)(p+4)-(p+1) 1 _4
e( )_I.!D(;]p E(p)—|F|)£];]p (p+3)-(p+4)-(p+1)+3 p 5




Problem solved

Simulation of step responses in Matlab.
al) step response — steady state value of output if w(t)=1

Step2

_L-l- e 3 >+ 1 v
- - " = [ 2+65+4
Step i Add2
Transfer Fcn Transfer Fenl

a2) step response — steady state value of output if z(t)=1

Fi

P
Step2
B e + 1 Y

— i —h+ _h

— - 46544
Step o s+3 Add2
Transfer Fen Transfer Fonl




Problem solved

Simulation of the step response in Matlab.
b) Steady state value of error signal, if w(t)=1

5+3 L+55+4

Scope
Transfer Fcn Transfer Eon op

Step




Linear analogue controllers

Any deviation of the output from reference input is detected by an error
detector. The error is used as an actuating signal for control action through a
controller.

controel deviation e(i) actuating
——» CONTROLLER —»
signal u(i)

There are three simple types of controllers according to the way they process
a signal.

1) Proportional control: actuating signal is proportional to the error signal

2) Derivative control: actuating signal is proportional to the derivative of
error signal

3) Integral control: actuating signal is proportional to the integral of error
signal




1. Proportional control

e(i) . u(t)

Differential equation of ideal P-controlleris:  u(t) = - e(t)

Transfer function of ideal P-controlleris: U(p)=r, E(p) = Gr(p)=—U(p) =T

E(p) °

Step response:

Ll

eft)

o

Stepl P controller uft)
ro =2




General features of P-controller.

We expect that P-controller will improve or accelerate the response of a
process. The larger r, is the faster and more sensitive response with
respect to e(t)-given error.

If r, is too large we expect the control compensation to overreact, leading
to oscillatory response, in the worst case, the system may become
unstable.

There are physical limits (for voltage or current) — the control system is
saturated.

We may expect a system with only proportional controller to have steady-
state error (offset)

©N0lo




Derivative D-controller.

e(t) uii)

o  deit) .

Ldt

Differential equation of ideal D-controlleris:  u(t) = rl%

Transfer function of ideal D-controlleris:  u(p)=r pE(p) = G.(p) =%= r,p
r E p

Step response:
(ideal) t

Derivation is never used by itself !




Integral I-controller.

e(t) u(i)

— r, Jey at —"—

Differential equation of ideal P-controller is: u(t) =r, [e(t)dt
0

Transfer function of ideal P-controller is: U(p)—rBE(p) = G,(p)= légg; r—pl

Step response:

1
- 5 >

]
e(t)
]
u(t)

Stepl Integrator




Proportional-Integral: Pl-controller

I
e(i) u(t)

.y _i-e(.t) at 4’J

Differential equation of ideal Pl-controlleris:  u(t) = roe(t)+r_1je(t) dt
0

¥

L

Transfer function of ideal Pl-controller is: U(p):roE(p)+r1%E(p) =

Gr(p):m_r +r

M nptry
Step response: E(p) ° p p

» ]
ap e(t)
il -
ro=2
a0 S N[E=
1 4,—" + ]
5 Add2 ut)

r-1=1 Integrator




General features of Pl-controller

r, is the integral time constant

The integral action is such that we accumulate the error from t=0 to the
present. Thus the integral is not necessarily zero even if the current error
is zero.

Pl-controllers can eliminate offset.

The elimination of the offset is usually at the expense of a more
underdamped system response. The oscillatory response may have a short
rise time, but is penalized by excessive overshoot or exceedingly long
settling time.




Proportional-Derivative: PD-controller.

Iy
o) I u(t)

o o deft)
1
di

de(t
Differential equation of ideal PD-controlleris:  u(t)=r,e(t) + f1%

Transfer function of ideal PD-controller is: U(p)=rE(p)+r pE(p) =
U(p)
G, (M= _r i1, p
u (1) E(p) ° '
Step response: A
(ideal)

|

[ —
In practice, we cannot build a device that provides ideal derivative action.
Commercial PD-controllers are designed on the basis of a lead-leg element

with very small time constant a.r;. [+
0 1

G, =
anp+1




General features of PD-controller

r, is the derivative time constant

In contrast, proportional and integral controllers are based on the present
and past error. Derivative controller action is based on how fast the error
is changing in time.

PD-controller is not useful for systems with large dead time or noisy
signals.

PD control may improve system response while reducing oscillations and
overshoot.

If simple proportional control works fine, we may try PD control. The
additionally stabilizing action allows us to use larger proportional gain and
obtain a faster system response.

Accelerates system response.
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Proportional-Integral-Derivative: PID-controller

Iy >

© > » o7, je(.t) dt F—— g H“m
L1}

p deit)
' di

Differential equation of ideal PID-controller is: u(t) =r,e(t) + r_lje(t) dt+r, —dZit)
0

Transfer function of ideal PID-controller is;: U(p) = roE(p)H_l%E(p)Hl pE(pP) =

2
Gr(p):w:ro +&+rl p= P+, +1P

E(p) p p

Step response:
uf)
(ideal) A




General features of PID-controller

Step response:

With higher-order polynomial in the numerator, the PID-controller is not
considered physically realizable. We can say the same as we said about the
ideal PD-controller too.

We have to attach the term in denominator again. Small time constant does
not influence desired dynamic of the system a lot.

rp+r, +rp’°
plarp+1)

* PID controllers eliminate steady state error.

* PID controllers ensure faster acceleration, shorter settling time and
smaller overshoot.




Design of regulator.

We introduce feedback to:

e decrease the sensitivity of the system to plant variations
e enable adjustment of the system transient response

* reject disturbances

* reduce steady-state tracking errors

Primary concerns of control system are stability and performance.
Performance is an issue for stable systems.

Performance specification can be presented in time domain or the frequency
domain.

Time domain specification generally take the stability, form of settling time,
peak time, percent overshoot, rise time, and steady state error.

The standard performance measures are usually defined in terms of the step
response.
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Revision

Name the main signals in the following control system.

cauu—-é—» G,(p)

¥

Explain the principle of this control system.

Write the formulae of:

Control transfer function

Deviation (Error) transfer function

Disturbance transfer function

Write the formula for the calculation of steady state error if the input is the unit step.
Write the formula for the calculation of steady state output if the input is the unit step.
Write the transfer functions of:

P-controller

I-controller

D-controller. (Is it possible to use D-controller by itself?)
Pl-controller

Ideal PD-controller, real PD-controller

Ideal PID-controller, real PID-controller

Describe general features of P, I, D, PI, PD, PID controllers.
How do the controllers influence the control process?
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9. Stability Analysis of Closed-loop
Control System




Definition of Stability

e BIBO stability: The system is Bounded-Input Bounded-Output stable if the output response is
bounded for any bounded input, otherwise the system is said to be not BIBO stable.

e Stability in terms of characteristic polynomial of a control system:

If the roots of a characteristic equation have negative real part the output response is finite

indicating stable system. The roots with positive real part lead to an infinite output response
indicating unstable system.

wllmj
 a) Stable response X

= Imyj Stable




e b) Sustained oscilations

. c)UnstabIe




Methods of stability investigation
* Finding all roots of the characteristic polynomial (if it is possible)

e Using higher-order algebraic methods (Hurwitz, Routh-Schur
criterion)

* Root locus method

e Using methods in frequency domain (Bode, Nyquist)




Necessary condition of stability: (but not sufficient)

Consider the system with characteristic equation:

-1 —
ap"+a,, p"+..+a,p+a, = 0

1. Condition — no coefficient is zero, no term is missing.
2. Condition — all coefficients must have the same sign ( positive or negative)=>

then the system may or may not be stable.

If one coefficient of the characteristic equation is missing or is not of the same sign =>

the system is unstable.

For polynomial of degree 1 or 2 with a positive leading coefficient, the necessary conditions are
sufficient as well. For polynomial of degree 3 or higher we need to use other criterion.
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Necessary condition of stability: (but not sufficient)

Using necessary condition of stability determin stability of the systems done by characteristic
polynomials

Alp) = p®+7p*+17p°+9
A(p) = p? + 2p? + 9p +68
A(p) = p* + 2p> —4p? +10p -1
A(p) =4p?+8p + 4

Alp) =-4p°-8p -4




Examples:

1. Consider third order characteristic equation: p3+4p?+6p+4=0
On factorization is expressed as: (p+2)(p?+2p+2)=0
The three roots are: p,=-2
p,=-1+i
ps=-1-i
It is observed that none of the roots have positive real parts, therefore the system is stable
e 2. Consider third order characteristic equation: p3+p?+5p+125=0
On factorization is expressed as: (p+5)(p?-4p+25)=0
The three roots are: p,=-5
p,=+2 + 4,5i
ps=+2 - 4,5i

Although all the coefficients are positive the equation has distinctly two roots p, and p; having
positive real parts which makes the system unstable.
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Hurwitz criterion

In order to determine the existence of a root having positive real part for a nth order polynomial
with the positive coefficients can be used algebraic criteria of stability.

For given nth order polynomial A(p)= a,p"+a,, p"1+..+a,p+a,

n n-2 n—4 e

Hurwitz determinant: H=| 0 a A e

- .:::, .:::,

=

0 0 0 - a,

For the roots with only negative real parts it is required that the Hurwitz subdeterminants be
greater than O.

Hl = ‘an—l‘ > 0
Hg _ an—l GH—S ) 0
a, a, -




Solved example

System is given by transfer function: G(p)= 3
p*+11p® +33p* +37p+14

(11 37 0 O]
1 33 14 0
0 11 37 0
0 1 33 14]

Hurwitz determinant: H=

Hurwitz subdeterminants: H, =11 ) O
11 37

H, = =326 0
2 11 33 )

11 37 0
H,=|1 33 14/=10386 ) 0
11 37

H,=H,-14 ) 0

All Hurwitz subdeterminants are positive. System is stable. Find the roots in Matlab.




Routh-Schur Criterion

For given n'" order polynomial A(p)= ap"+a,,p™+..+a,p+a,

B w e

.

The coefficients are written into the row starting with the leading coefficient.
The coefficients at the even position are underlined and written down into the second row.
We reduce the order of characteristic polynomial by one term.

The steps 1- 3 are repeated while all coefficients stay positive. If there is a negative coefficient
in the row, the system is unstable.

The reduction process continues up to a row with three coefficients.

If these three coefficients are all positive, the system is stable, otherwise it is unstable.

arz an—l aH—E an—E an——'l aﬂ—ﬂ . -
an—l 0 aH—E 0 an—i 0 e T
an an an
an o an—l an—l an—E o an—E an—E am——’l o an—i an—i
l l #)




Solved example

System is given by transfer function: G(p)= 3
p*+11p° +33p° +37p+14

1 11 33 37 14 %zi
11—"0 37— 0 0 11
1-11-e, 11  33-37-a, 37 14
11 121
0 11 326/11 37 @ =556 = 550
0 326/11-" 14 fu EED

0 D--@)

Conclusion: All three last coefficients are positive, the system is stable.




Problems

Using Hurwitz or Routh-Schur criterion determine the stability of the
systems done by characteristic polynomial.

* A(p) = p> + 2p* + 9p +68

* Alp) =2p* +p> +5p° +3p +4

e A(p) = 2p* + 5p3 + 5p° + 2p + 1

* A(p) =-p>—3p*-10p°>-12p°-7p -3

Confirm results using the Matlab function “roots”.




Problem solved

Find the ultimate gain r, for stable closed-loop system. If we have only a proportional controller G, = r, and
system given by the transfer function: 1

G =
T (p+3(p+2)(p+D)

o

Control transfer function: G,(p)= Y(p) __ GG, _ (p+3(p+2)(p+D) _ ‘o - fo
' " W(p) 1+G.G, . Iy (p+3)(p+2)(p+)+r, p°+6p°+1lp+(6+r,)
(p+3)(p+2)(p+1)

Characteristic polynomial: A(p) = p3 + 6p? + 11p + (6+r,)

6 6+r, O
Hurwitz determinant: H=1 11 0
0 6 6+r,
H,=6>0
Hurwitz subdeterminants:
6 6+,

~66-6-1,=60—r, >0
1 11 n

H,=H,(6+r) >0 <60 and ry >—-6 - 1ry€(—6;60)

2:‘




Direct-Substitution Analysis

The closed-loop poles may lie on the imaginary axis at the moment a system becomes unstable. We
can substitute p = jw into the closed-loop characteristic equation to find the proportional gain that
correspond to this stability limit (which can be called marginal unstable). The value of this specific
proportional gain is called the critical or ultimate gain.

The corresponding frequency is called the crossover or ultimate frequency.
Example: Apply direct substitution to the characteristic equation from previous example.

p3+6p?+11p+(6+r,)=0

* substitution of p =jw leads to: -jw? -6 w?+11ljw+(6+ry) =0
e the real and imaginary part of the equation are:  Re: -6w?+(6+r,)=0
Im: ~w? +11w =0

From the imaginary-part of the equation, the ultimate frequency is o, =11

Substituing this value into the real-part equation leads to the ultimate gain r,, = 60, which is
consistent with the result of the previous example.

If we chose the other possibility, w, =0, i.e. the poles are on the real axis, the ultimate gain would
be r,, = - 6, which is also consistent with the result of the previous example.
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Simulation in Matlab

a) Poles: 0.0000 + 0.0000i
-3.0000 + 1.4142i
-3.0000 - 1.4142i J’

System unstable. Step

1
(A2 1)

3
Y

Zaind Zero-Pole

b) Poles: -6.0000 + 0.0000i

-0.0000 + 3.3166i I_'_P: (g+315:2:-:3+1:|
Stepi

'OOOOO - 33166| Add1 Fain Zaro-Poled

System on stability limit:

sustained oscillation




Problem solved

Assume the second-order transfer function. If we synthesize the control with Pl controller, what are the

stability constraints?

1 r, r,p+r
G, = _ T _ o -1
T opP+2p+l G, r0+p D
Lp+r, 1
G _Y(P) _ GG _ p p’+2p+l_ Lp+r,
Y W(p) 1+G,-G, ., NP+, PP +2p° +(l+r)p+r,
p(p2+2p+1)

The characteristic equation is: p>+2p?+(1+r,)p+ r;=0

2 r, O H,=2>0

H,=20+r,)+r,>0 = 2r,>r,-2= 1,> %r_l—l

or r,<2r,+2




Problems

1. Find the stability constraints.

1
GS: a1a1>0
a, p*+a, p :

r
a) GR:?1
b) Gp= fp+-t
R 0 p

2. Characteristic equation is: A(p) = 0,002p3 + 0,08p? + p(0,15K - 1) + K

Find the condition for K for the system to be unstable.




Nyquist criterion

Application of Nyquist criterion to determine stability of closed loop control system.
Closed loop stability is determined from Nyquist plot of open-loop transfer function: G,(p)=G.(p)-G.(p).
The Nyquist plot for a stable system is shown in Fig. (a). The plot t

4 C(l) [P/ W NENY .

crosses the negative real axis at w when the corresponding

magnitude |G,(jw)| is less then 1. T+ R T
N

(b) If the plot passes through the point (-1+j0) the system starts
tending towards instability. The magnitude of |G,(jw)| equals to 1
at this point.

1+j0 \
L

Imj

(c) It is concluded that if the gain is increased the closed-loop system

becomes unstable.




Nyquist criterion

Gain margin: Nyquist plot gives the information about the stability and also indicates how far the
system is stable, how the performance of the system can be improved in view of stability.

The gain margin is a factor by which the gain of a stable system is allowed to increase before the
system reaches instability.

1
In decibel the gain margin is given by: ¢-M.= 20logy, GoG@)l (db)
For stable systems |G,(jw)| < 1, the gain margin in decibel is positive.
For marginally stable systems |G,(jw)| = 1, the gain margin in decibel is zero.

For unstable systems [Gy,(jw)| >1 , the gain margin in decibel is negative and the gain is to be
reduced to make the system stable.

Phase margin: Is observed that the unit circle crosses the Nyquist plot at w.

The phase margin of a stable system is the amount of additional phase lag required to bring the
system to the point of instability. The phase margin is given by P.M.= 180° + arctan|G,(jw)|
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Gain margin and phase margin from Nyquist plot




Nyquist plot for stable system and for unstable system

On the assumption that there is none unstable pole in the system G (jw).




Solved example: Nyquist criterion

Examine the closed-loop stability of the system whose open-loop transfer function is given by:

Gop) =
(r+D@+2)
Using Matlab:
num =
50
>> den=[1 3 2]
den =
1 3 2

>> nyquist(num,den)

Imaginary Axis

Nyquist Diagram

Im
15 - : o ' .
sys |
T
-
10 ~ .
/ .
i .,
{ ,
S W= w=-0 |
+= : Re
,-'1 W=+ == m=+0||
/ - i
/ \d
Il K;
-5 t._ /; —1
1 \H
15 ) o I




Determination gain margin and phase margin in Bode plot

The gain margin and phase margin can also be obtained from the Bode plot of the open-loop
transfer function and the stability of closed-loop system cam be determined.

4
p(0.5p + 1)(0.08p + 1)

lllustrative example: [Gy(p)| =

1 1
The corner frequencies are: @1 =g = 2rad/sec W2 =308 12,5rad/sec

The starting frequency of the Bode plot is taken as lower than the lowest corner frequency: starting
frequency is taken as 1 rad/sec. The initial magnitude for w=1 is [A(w=1)I,,=20log(4/1) = 12db.

The initial part of the Bode plot is -20 db/decade.

Phase for frequencies between w=1 rad/sec to w=100 rad/sec is calculated as below:
go(GO(ja))) = —90° — arctan(0.5w) — arctan(0.08w)

The gain in db at phase cross over frequency (w=5) is the gain margin: G.M. = 12 db.
The gain cross over frequency is 2,5 rad/sec, the phase ¢(w=2,5) = -153°.

The phase margin is given: P.M.=180°-¢(w=2,5)=180°+ (-153°) = 27°




4
Bode plot for 160l = p(O 5p + 1)(0.08p + 1)

i
i

16 Gieo) .., [ s S SRS S ¢ (Go () |
ry _ s
1 | o 120°
~20 PM +27° hase £
10 oh/d crossover 150°
! S =
0
1 Py . - 180°
sl / <10 20 50 100
Gain : = 1—-210°
- 20| crossover ‘6’ oL -
GM+120b | : K
fL 30 B @(Gy(jw)) 3 2700
1Go (o)l = gy
(4
o/
%

The gain margin and phase margin both are positive, therefore, the closed-loop system is stable.

[@Nolen




Revision questions

* Which of components of PID:
a) can accelerate the response of the control system
b) can eliminate the error-steady state value
c) can extend the settling time

 Where are the poles of the transfer function located, if
»the system is stable

»the system is unstable

»the system is oscillating with constant amplitude

* The necessary condition of stability.
e Which algebraic criteria of stability do you know?
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10. Quality of Control Performance.




Quality of Control Performance

e Stability
e Control performance quality (quality criteria)
e Static accuracy - steady-state deviation
e Settling time
e Aperiodicity criterion
* Integral criterion




Steady-state deviation for different types of systems,
different types of controllers and different types of input
signal.

1) Types of the system:

 Static system: no root in origin (s=0)
e Astatic system: one or more roots in origin (s= 1, 2,...)

2) Type of the controllers: 3) Types of input signal

e P (r=0) a) Control input signal b) Disturbance input signal

o | (r=1) Constant control: w(t) =w, Constant disturbance: z(t) = z,

e P| (r=1) Linear increasing control: w(t) = w,(t) Linear increasing disturbance: z(t) = z,(t)
e PD (r=0)

e PID (r=1)




Steady-state value of deviation if input signal is W(p)

1

Transfer function of deviation:  G,(p) =
AT AR

Error signal:  E(p) = G.(p) - W(p) =

6 6o WP

Steady state value of error signal:  e(®) = y_rf(l)P - E(p)
W Yo i
r+s P p2
0 e(0) =T # 0 &(o0) =
1 e(0)=0 e(0) =72 #0
2 e(0)=0 e(0)=0




Solved example

Determine steady state deviation. Input signal is W(p).

W,
1/s=0,r=0: Gsz% Gy,=r, W(p)=—
p-+2p+1
_Em _ 1 _ 1 _ p%+2p+1
€ W) 1+GsG, 1.|.102+7‘20p+1 T p242p+(1+1y)
E(p) = Ge%
Wo Wo

=l -G- =
e(e0) = limp - G, >~ 1tr




Solved example

Determine steady state deviation. Input signal is W(p).

1 r w
-0r=1 G =————  Gy=-L W(p=-—-
2.s=0,r=1: T o iapal "= (p) .
c_Ew _ 1 1 _ p-@*+2p+ 1)
WP 1466 4 1 To1 p3+2p2+p+ry)
p’+2p+1 p
E(p):Ge%

2
. w . . +2p+1 w
e(0) =limp-G,-— = limp - f(pzp ) —==0
p—0 p p—0" D°+2p“+p+r—1) p




Solved example

Determine steady state deviation. Input signal is W(p).

1

3.s=0,r=1: G GR:r0+£ W(p):%

S:p2+2p+1 p p
o _E® _ 1 1 __ p-(@*+2p+1)
© W) 1+GG 4 1 np+ra pP42p2+p(l4ry) g
p?+2p+1 p
E(p)=Ge%
. Wo . p-(p2+2p+1) Wo
e(o) =limp-G,-—=limp - -—=0

p—0 p p—0"  P3+2pZ+p(A+rg)+r—y D




Solved example

Determine steady state deviation. Input signal is W(p).

1 r W,
4.s=0,r=1:  =—————— G, =—- W(D) = —
© W) 1+GG 4 1 T pP42p?4+p+r,y
p2+2p+1 p
E(p)zGe%
(2
e(oo):limp.Ge.ﬂzlimp.p(p+2p+1) -ﬁzﬂ

p—0 p?  p-0 p3+2p2+p+r_,; p? To




Conclusion

Condition for zero steady-state of deviation: S + r 2 1 + I

Where:

* s =number of roots in origin in transfer function of system

e r=number of roots in origin in transfer function of controller
* | =0 when control input is step function

* | =1 when control input is ramp function

Steady-state value depends on the sum of astatic poles, no matter if they belong to the system or to
the controller.

©N0lo
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g

Gs(p)
”%=1+@@y®@>
Z(p

: Gz(p) =
' bance:

ction of distur

fer fun

Trans

Gs(p)

’ Gr(p)
S Ferey

t signal:

Outpu

Z(p)

( )
( )
y

z
2
Z0 p
: . = -
p = e()
r+s e(oo)z—m —
=0, s=0 - —
r =0, — Zl
e(o T —
— e(o) = T_1
r=u,
e(o)=10 -
1, s=0 — .
r: 9
e(0)=0
=1, s>0
r=i,




Solved example

Determine steady state deviation. Input signal is disturbance Z(p).

1.s=0,r=0: I 7o) = 20
s p2+2p+1 R ro (p) p
1
cY® _ G _ pP+2p+l 1
Y Z(p) 1466 g 1 p?+2p+ 1+

p2+2p+1°r°
Zo
Y(P)=Gz'?

1 A

: Zo .
(00] = — (0] :—1 'G -—::—l . .
(0) = =y(e0) = =l p -G p pool pZr2pitr, p




Solved example

Determine steady state deviation. Input signal is disturbance Z(p).

2.1s=0,r=0:| g-— 1 o 7zl
S p2+2p+1 R 0 (p) p2
1
o YP) _ G pP42p+l 1
2 Z(p) 1+ GG, 1+ 1 e PEt2p+1+47m
p2+2p+1 O
Z1
Y(p)ZGZ'F

. Zq . 1 Zq
e(o) =—y(o)=—-limp-G,-==—-lmp———-—=—
( ) y( ) p—>0p Z pz p—>0p p2+2p+1+7'0 pz




Solved example

Determine steady state deviation. Input signal is disturbance Z(p).

1 Z
3./s=1,r=0: " p-(p+]) G =1 (P) )
1
oY G _ p-+tDh 1
z Z(p) 1+G5Gr 1_|_—1 .7 p2+p+r0
p-(p+1) °
Z
Y(p)=az-5°
() = —y(0) = — limp - G, - - I L %
) = — ) = — .  _— e — . - — =
Y pool ool D p+r, p

A
To




Solved example

Determine steady state deviation. Input signal is disturbance Z(p).

1 r Z,
G=— 1+ Z(p=2
4.1s=0,r=1: ST 2p+ G =1, 0 (P .
1
G_Y(P)_ G p?2+2p+1 B p
T Z(p)  1+GG 4 1 TP +T1 p3+2p2+p(1+1)r.,
p?+2p+1 p
Z
Y(p):GZ-?O

—_ — — h . . Z_O — — i . p . @ =
e(e) = —y(e) ;lal—rfcl)p Gz p 1191_1}(1);) p3+2p?+p(1+19)r—1 P 0




Solved example

Determine steady state deviation. Input signal is disturbance Z(p).

1 r, Z
5.1s=0,r=1: R — =h+—  Ap=—
G% p2+2p+1 Gh 0 p (p) p2
1
c - Y® _ G pZ+2p+1 B p
©Zp) 1+GG 1 TP +1a p3+2p2+p(l+ry)+1ry

p2+2p+1 p

Z1
Y(p) = GZ ) ?

Z—1==—llmp. P Z_l— 21
pZ

= — = — l . G . . =
e(e) y () poo Pz p-0" p34+2p2+p(l+r1y)+1q p? r_1




Solved example

Determine steady state deviation. Input signal is disturbance Z(p).

1

Ga=ty+=  Z(p)=—2

_ _ 1. G. =

6. S— 1,r—1. S p(p+1) p p
1
G=Y(p)= G _ p-(p+1) _ p
Y Z(p) 1466 1 TP +71a p?+p(l+1r) +ry
p-(p+1) 14
Zo
Y(p)zGZ.?

P o _

: Zo :
= — :—1 -G -—:—l .
() y () poo Pz p poo P p?+p(l+r)+rqy p




Solved example

Determine steady state deviation. Input signal is disturbance Z(p).

7./s=1,r=1: G =— G,=r+= Z(p)=—
p(p+1) 0 0’
1
Gzy(p)z G _ p-(p+1) _ p
T Z) 1466, 1+ 1 np+ra pr4+pl+r)+1,

p-(p+1)  p

A
Y(p) =Gy - p_z

. Zq . P Zq Zq
e(o) = —y(o)=—-limp-G,-—==—Ilimp - P ==
() () p—)Op Z p2 p—>0p p2+p(1+4719)+r—1 P2 1




Conclusion

e Condition for zero steady-state of deviation: S +T Z 1 +m + 5

Where:
* s =number of roots in origin in transfer function of system
e r=number of roots in origin in transfer function of controller

* m= number of roots in origin in disturbance transfer function

¢ = 0 when disturbance input is step function

¢ =1 when disturbance input is ramp function




Aperiodicity criterion

Basic types of transient response:
e Oscillatory response with overshoot N
e Oscillatory response without overshoot

e Aperiodic response with overshoot

* Aperiodic response without overshoot

Procedure of aperiodicity test:

» Assume the characteristic polynomial of a stable control loop: A(p) = a,p"+a,, p"1+..+a;p+a,

e Create sequence of 2n+1 terms: a, n.a, a,;, (nla,, .. a 2a a a 3q,

e Apply Routh-Shur algorithm to reduce the terms step by step to the sequence consisting of 3
terms.
e Determine the type of response:
i. Ifall 3 coefficients are positive, system has an aperiodic response.
ii. Ifthere is a negative coefficient, system has an oscillatory response.
ii. Ifthere is a zero coefficient, system has a response on the boundary of aperiodicity.

©N0lo




Aperiodicity criterion: Problem solved

Characteristic polynomial is A(p) = 4p? + kp + 2

Find k to set the step response on the boundary of aperiodicity.

4 8 k k 2 . _3_1
8 0 K 0 0 "8 2
4—18 8 k—E k 2 8 16
2 2 ay =g =
k k k
— 0 2 0 2
2
k 32
0 5 k-— 2
Condition for boundary of aperiodicity: 32
k—=—-=0
k

2) Kk =-v32




Integral Criteria of Control Quality

Integral criteria of control quality search the optimum controller constants by minimization of a
proper goal function — optimality criterion. .

1. Linear integral criterion IE (linear control area): |, =J e(t)dt — min

0

2. Quadratic integral criterion ISE (quadratic control area): integral of the square error:

I =j e?(t)dt — min

0
3. Integral criterion IAE : integral of absolute error: —o

1, =j le(t)|dt — min
0

—00

4. Integral criterion ITAE: integral of time weighted absolute error:  [,;,z = f t-le(t)|dt » min
0

©N0lo




Integral Criteria of Control Quality

V(=)

Graphic representation:

1. Linear integral criterion IE (linear control area):

>\

2. Integral criterion IAE : integral of absolute error: y(=)

+:
é

3. Quadratic integral criterion ISE (quadratic control area): integral of the gquare error:

_e?

Pard

e

Iq:Tez(t)dt:T[y(oo)—y(t)]zdt —  min

(=)

Disadvantages of use of the quadratic integral criterion: 0
» Greater deviations (beginning of response) have higher weight during calculation.
* The optimum responses would suppose less deviations - there is a overshoot.

* The optimum control performance is oscillating.




Calculation of the quadratic integral criterion by means of
Hurwitz matrix.

Calculation of control transfer function or deviation transfer function:

Gs(p)Gr(p) C.(p) = 1
1+ G,(p)G,(p) P T GG ()

Gw (p) =

n-1 =2
Laplace transform of deviation: ()= G, 1_ b,,p" +b,,p"" +- +bp+b,

] n—1
P ap +a_p +-—-+ap+a,

— 1
or: Y(p) =Y(p) ——limp - Y(p)
p p=0
a -1 an— a -3 0
a, d,, d,, 0
Calculation of Hurwitz determinant: H,=10 a, a.; =
: i 0




Calculation of the quadratic integral criterion by means of
Hurwitz matrix.

e Calculation of modified Hurwitz determinant:

by hy By o by, by =(-1"b2,
Gy Gy Gy O hy = (=1 (byy —2b,.5,5)
H=0 a, a,; ™ By = (-1 (b2, —2b, b, +2b_b, ;)
' : P 0 :
Lo 00 a] = ()83

1 det(H,)

* The quadratic control area is calculated from the following formula: —
' 2a, det(H))




Problem

1

Assume the system given by the transfer function: G =——-">
(10p+1)°

Three controllers were designed for this system. Compute the quadratic control area and decide

which controller is the best according to the quadratic integral criterion. Simulate and compare the
step responses in Matlab.

0,05

P
0,6(10p+1)
~ p(0,5p+1)
~2(10p+1)?
B p0,5p+1)

GRl

R2

Results: 1) Ig =23,3 2)1qg=28,16 3) 1g=0,5




L
4

Solution: Simulation in Matlab

\_‘

Stepi

—— 4 [t

=
:

+ 0.05 1 ]
_ —— —_— -
s 10052+205+1
Add Transfer Fcn Transfer Eonl Scope
+ 8s+0.8 1 | |
_ - — >
0.Bs=+s5 100s=+20s5+1
Add'1 Transfer Fon2 Trorefor Ford Scope
+ 20052440542 1 ]
_ o= - - "— h
0.5+ 100s=+2{0z+1
AddZ Transfer Fond Scopel

Transfer Fcnb
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11. Design of Controllers




Design of regulators

We introduce feedback to:

» decrease the sensitivity of the control system concerning the changes of the controlled system
* enable adjustment of the system transient response

* reject disturbances

* reduce steady-state tracking errors

Two problems are necessary to be solved at controller applying:
* choice of suitable controller type ( to achieve stability and zero steady-state deviation)

* setting controllers’ parameters = controller adjustment (to achieve desired settling time, overshoot,
and other time parameters of the response)




Usability of controller types:

Controller System

Oth or 15t order
Little dead time

P Little disturbances
It causes steady-state deviation
Higher order system

P Less dead time

Big but not frequent changes of disturbances
Zero steady-state deviation

Higher order systems with dead time
PD Little and not frequent changes of disturbances
Non-zero steady-state deviation

Higher order system with dead time
PID Big and frequent changes of disturbances
Zero steady-state deviation




Design of regulators

A. Empirical methods of controller adjustment:

1. Ziegler-Nichols method

2. Method of standard form of characteristic equation
ITAE criterion

Q)
— —

b) Whiteley forms
c) Multiple roots adjustment
d) Two dominant roots adjustment

B. Standard methods of controller adjustment

1. Integral criterion
2.  Optimum module criterion

C. Design of state-space regulator
1. Root locus technique
2. LQR - methods




Ziegler-Nichols method

 This method is based on closed-loop testing (called on-line tuning), of processes that are
inherently stable, but in which the system may become unstable. We use only P-controller in the
experiment, the | and D controllers are disabled. Then the proportional gain is slowly increased
until the undamped oscillations begin in the system.

* The proportional gain and the period of oscillation at this point are called the ultimate gain r_,
and ultimate period T,.

e - y(t) /
wi(t) 4 () » T, L‘- (. -;'s(l}) » \ / \ //

* These two quantities are used in a set of empirical tuning relations developed by Ziegler and
Nichols, listed in table below:
K(

r—1
Gr=r,+—+np =

1
1+ —+T
T p dpj

©N0lo




Ziegler-Nichols method

Optimal setting of the controllers

Controller ro r, r, T, Ty
P 0,5 ry, - - - -
PI 0451y, | 0,531,/ T, - 0,85 T, -
PD 0,4 Iy, - 0,02 ry, T, - 0,05 T,
PID 06ry | 1,21,/ T, | 00721, T, | 05T, 0,12 T,

1
K1+ —+T
( Tip dpj




Ziegler-Nichols method

* Design of I-controller:

P and D-controllers are disabled. Time constant T, is slowly decreasing until the undamped
oscillations begin in the system. The time constant at this point is ultimate T,

This value is used to set the optimal integral time constant of I-controller:
e T,=2T, fordamped periodic response
e T,=4T, foraperiodic response

When amplification of control loop onto stability limit is impossible. Then we can compute the
controller’s parameters from parameters of step response of the system: dead time T, rise time T,
and system gain k.

’ e | Controller I T, T,
T, 1 ] ]
P e
T 1
Pl 09Ty 35T, -
T, 1
T T, PID 1’25f§ 2T, 05T,




lllustrative example

Design the P-controller for the system given by transfer function using the Ziegler-Nichols method.

Gz
p*+2p°+4p+1
Gr=r,="
a) Simulation in Matlab: I—IH >{? . 1 ""'
Step — 2 +det
ROk - 7 |_>J%:h:I Gain Transfer Fn
T,=3

b) Optimal setting of P controller: r,=0,5.r,, = 0,5.7 = 3,5

Simulation in Matlab: j

—— .+ 4»{ 1
_ 35 -
Step |" 4252+ 40+

Add Gain

Transtar Feon




Ultimate gain r,, using substitution p = jw

Closed-loop transfer function: o
GGy pP+2pi+4p+l r
"1+ GLG 1+ I p+2p? +4p+1+r,
p’+2p*+4p+1

Characteristic polynomial on stability limit: A(p) = p3 + 2 p2 +4p+1+1,=0

After substitution: A(jo)=(jo) +2(jo) +4jo+1+1, =—jo’ -20° +4jo+1+1,=0 <

Re{A(jw)} =0 and Im{A(jw)} =0

Im: —0’+40=0 = -0 -9=0 <& o =0 and o,,=12

Re: 20° +1+1,=0 = for w=+2: -8+1+r,=0 < r0:7I:>
for w=0: 1+r,=0 < rp=-1

For r, = 7 the system exhibits sustained oscillation, therefore the system is on the verge of instability
or marginally stable.

@ OB




Method of standard forms of characteristic polynomial

1. ITAE Criterion [tle(t|dt
0

The time-weighting function penalizes errors that persist for a long period of time. This function helps
to derive controller setting where long settling time is permitted.

This is just another empirical method. We are simply using the results of minimization obtained by
other people.

Standard forms of characteristic equation depend on the numerator of control transfer function.

For this form of transfer function:

ay

a) Gﬁ; = n n—1

were obtained this forms of characteristic polynomials:

o for the second-order system: A(p)=p?+ 1,49 w p + w?
 for third-order system: Alp)=p>+1,72 wp?+ 2,17 w? p + W3

» for forth-order system: A(p)=p*+2wp3+3,35w?p?+2,7w?p + w?




1. ITAE Criterion I}\e@\ dt

b) For transfer function: Gy = AP T4y

a,p” +r.qrn_h,1:;=""'1 +--+a,p+a,

Characteristic polynomials:

* for the second-order system: A(p)=p?+ 10w p + w?

e for third-order system: Alp)=p>+2wp?+19,2 w?p + w3
 for forth-order system: Alp)=p*+22wp+4w’p?’+2,7wp+ w?
c) For transfer function: G, = @p” +ap g

- n n-1
E’Iﬂp +ﬂn_1_p +"'+ﬂ1p+ﬂ0

Characteristic polynomials:
o for third-order system: A(p)=p3>+4,7 wp?+ 3,6 w?p + w?
 for forth-order system: A(p)=p*+3wp3+ 19 w?p?+9,5 w?p + w?
o for fifth-order system: A(p)=p°+4wp?+12 w?p3>+ 18 w3 p?+ 10 w? p + w’




Whitteley forms.

The standard forms are derived from the first overshoot amplitude. The settling time is longer than
in ITAE, but the overshoot is lower.

a) For transfer function:

e for second-order system:

e for third-order system:

e For forth-order system:

b) For transfer function:

e for second-order system:

e for third-order system:

e for forth-order system:

cl
Gﬁ'_ = " n—lD
a,.p +ﬂ'n_1p +---+a1p+au
Alp)= p?+ 1,4 wp + w? 5% overshoot
Alp)=p>+2wp?+2 w?p+ w3 8%

Alp)=p*+2,6 wp3+3,4w’p?+2,6wp+w? 10%

G - a,p+a,

i a,p”+a, ., p" +-+a,p+a,
Alp) =p?+ 2,5w p + w? 10% overshoot
Alp)=p>+51wp?+63wp+w’ 10%

Alp)=p*+72wp3+16 w?p?+12 W’ p + w? 10%




Whitteley forms.

a) For transfer function: G, = GLP tap+d

- " n—1
ﬂn_p +ﬂn_1p +"'+ﬂ1p+ﬂﬁ

Characteristic polynomials:

» for second-order system: A(p)=p3>+6,7wp?>+6,7 w?p + w? 5% overshoot
e for third-order system: Alp)=p*+79wp3+15w?p?+79 w’p+w? 8%
e For forth-order system: A(p)=p°+ 18 w p*+ 60 w?p3 + 69 w3 p? + 18 w? p + W’ 10%




Multiple roots optimum adjustment

Guarantee the aperiodic response.

For transfer function: G =

where c is multiple root. Numerators’ form is not obligatory, only recommended for optimum
adjustment.

» for second-order system: A(p)= p?’+2pc+c?
o for third-order system: A(p)=p>+3p°c+3c?p+c3
o for forth-order system: A(p)=p*+4p3c+6c?p’+4cp+c?




Two dominant roots adjustment

It makes possible to choose two complex conjugate roots and to locate the other roots to the
distance of 5-10multiple of the dominant root.

[

pl c

p3 Fie
-(5-100c

pa

Standard forms do not depend on numerator in this case.
o for second-order system: A(p) = [p + (c+jc)] [p + (c-jc)] = p?+2 pc+ 2 c?
o for third-order system: A(p)= (p?+2pc+2c2 ) [p+kc] =p3 +p? c(k+2) + 2 2 (k+1)p + 2kc3
 for forth-order system: A(p)=(p?+2pc+2c?)(p?+ 2kep + k3c? ) =
p? + 2¢c(k+1)p3 + c? (k? +4k +2)p + 2kc3(2+k)p + 2k*c?




Example solved

1
Design a Pl controller for the system given by the transfer function: Gs = _sz 1 2p
r
G,=r,+—
p
1(r p+r,)
_ GrG; _ hP+T1, _ 30 -
"1+ GLG, 3p*+2pP+rpHr, p3+2p2+rop+r—1
3 3 3
ITAE
? AP =p*+2pi+ L pela
Characteristic polynomial: 3 3 3

Standard form of characteristic polynomial: A(p) = p? + 2 w p? + 19,2 w? p + w?
Compare coefficients: 1/9
« atpZ 2/3 = 3¢ > ¢=2/9 Gr=64+—"
e atpl: ry/3 = 3¢? > r,=4/9

e atp% r,/3 =¢3 - r,=8/243




b) Multiple root adjustment

The characteristic polynomial is: A(p) = p® +% p +%0 p +%

We compare it with the standard form: A(p)=p3+3cp?’+3c?p+c3

e p2  2/3 =3¢ S c=2/9 Gr=§+8/ﬁ

e p: r,/3 =3¢ > r,=4/9 P

e p% r,/3=¢ - r,;=8/243

c) Dominant roots adjustment A(p) = p’ + 3 p° +r_§ P+ %

The characteristic polynomial is:

We compare it with standard form: A(p)=p>+7cp?+12c?p+10c3

e p?: 2/3=7c > ¢=2/21 Gr=1—2+w
e pli ry/3 = 12¢? - r,= 16/49

e p% r,/3=10¢ - r,=80/3177




Simulation in Matlab

Step responses for:

a) ITAE b) Multiple roots adjustment c¢) Dominant roots adjustment




Solved example

1
C p+3p2+2p
_ GrG, _ I,
1+G,G, p*+3p°+2p+r,

G

Gy =1,

w

* ITAE
Characteristic polynomialis:  A(p) = p®+3p*+2p + 1,
We compare it with standard form: A(p)=p>+ 1,72 w p? + 2,17 w? p + w?

Coefficients of the same powers must be equal, but in this case we obtain two equations for w and
the set of equations cannot be solved.

e p2: 3 =172w
e pli 2 =217 ?

e p%  ry=w?

We cannot even use any other standard form.




Example

Design optimal controller for the system and the input signal given
bellow.

1

Gy =—
8p° +22p+12

w(t) =k -t
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Quadratic integral criterion - integral of the square error

Object function: |, = jez(t) dt = Hy (o) -y (t)]%dt = J.W dt —» min v /\vf\w
0 0

0

This process consists of several steps:

1. Create control transfer function G,(p), or transfer function of disturbance Gz(pr}.
2. Calculate output function Y(p).

3. Calculate steady state value of output: ~ Y(0) =limy(t) = Ligg pY(p) = konst

- 1 b, p " +b, ,p"?+A +bp+b
V() =Y(p)-—y(e) = —tP_Toh2P 1P
P a,p +a,,p  +A +ap+a,

Create Hurwitz matrix H, .

1 det(H,)
The quadratic control area is computed from the following formula: 17 94 det(H )

For min |, determine these conditions: ol, 0 o1, 0 a1, o

. At the end check the stability. 0l Or4 on

4
5
6. Create modified Hurwitz matrix H, .
7
8
9




Example

Determine I-controller using quadratic integral criterion: G (p):; G _f1 2(t) =1
S 2p2 +6p+4 R p
1
. . G 2
1. Disturbance transfer function: G, = s(p) -t 6rp tt P
1+ GG 1+ =1 2p3 + 6p* +4p + 14
2p? +6p+4
gnal: () = G,(p) - Z(p) = P - -
2. OUtpUt Slgna . p - Yz p p - 2p3 + 6p2 + 4p +T'_1 p - 2p3 + 6p2 + 4p + T_l
3. Steady state value of output: (0) = i Z(p) ! 0
* . o0 ) = . e . —
Y P Y poo P AW =P 2p3 +6p%2 +4p + 14
- 1 1
Y :Y _— o0) =
(P=Y(p) pY( ) 207 +6p7 +4p+T,

4. Hurwitz determinant:
6 1 O

2 4 0 ] = T_1(24- — 27‘_1) == 24—7‘_1 - 27‘_21
0 6 14

H, =




5. Modified Hurwitz determinant: g, =

2 4 0]:1-12=12 h, =(-1)°b2, =0
h, =(-1)'(b>,-2b b .)=0
hy =(-1)*(b; ;) =1
C 1 det(H) 1 12
Y 2a,det(H,) 4 24r, -2r?

6. Quadratic control area:

o l, —3(24—4r_y) 0 (24— 4r )= 0 .
. = = > _ ’r_ = " =
7. Minimization: or_,  (24r_, — 2r2)? 1 r_1

8. Optimal setting of I-controller: Gr =

9. Simulation of the step response in Matlab:




Problem

Determine I-controller using quadratic integral criterion:

1 4

G. = 3 > G, =— w(t) =1
2,5p° +8p° +65p+1

S

R p

Solution: r,=-0,6529 (unstable solution)

r,=0,2432 | (optimal setting)




Optimal Module Criterion

The target of control is described by this objective function: | G,(j o) |>1

ideal request

[ [Gwf”
i . 2
o resonant rise ‘ Gw(J a)) ‘ =1 = ‘ GW(J a))‘ =1
| Gwelj )| *=1 . i B .
| [Gu(io)|=|Y(io)|
y real solution B o™ 4B a)z(m_l) © iBo’+B
E G H 2:Y' 2:Y' 'Y—- — m m-1 1 0
| : Culiof =N o) = V(o) ie) = e A+ A
" >
| ]
Where:
A, :a§ B, :bﬁ:
A, =a -2a,a, B, = b} —2b,b,
A, =a; —2a,a, +2a,a, B, =b; —2b,b, +2b,b,
“in—l - E"]Ira:—l _2‘arz—2 ) an B.PE—]. :bj—l _zbrz—l 'brz

A =a B, =b;




Optimal Module Criterion

Toreach |G,(j )" =1 must the coefficients: A =B, A =B, A =B

B, B B

—0 > 2 >...
A A

A

\%

In fact we are able to achieve:

From this set of conditions for monotone decreasing function we can obtain the parameters of
regulator.

lllustrative example: Determine I-controller using Optimal Module Criterion.

1 " 1
Gq(p)= 5 Gp=—> (=1
2p©+6p+4 P
1t
1 — Gs(p) _ 2p2+6p+4 _ p
' Z 146G (p)Gs(P)  14+——L—  2p3+6p2+4ap+r_,

2p2+6p+4




4.

6.

_ : — p 2 1
Y(p) = G.(p)-Z(p) = 2p346p2+4p+r_1 P 2p3+6p2+4Ap+r_q

. 1
y() =limp-Z(p) =p =0

2p3+6p2+4p+r_q

Computation of coefficients A, A,, .... and B, B,, ... of Y(jw)?> module.

By =b; =1 A =a;=r]
B, =0 A =a’-2a,a,=16-2-6-1,
Conditions for monotone decreasing function: Bo > By
Ao Aq
BoA; = B1 4,
1-(16 —12r_1) =0
16 4
M Tt

Optimal setting of I-controller: G,
p




Simulation of the step response in Matlab
e Optimum Module design:

| o o 3 1

——
= - s 252 +65+4
ep
Add Optimal Modul design Transfer Fcn

4] 1
+ » el g

S
= _ 5 252 +65+4
ep
Add Quadratic Control Area design  Transfer Fcn




Control design in state space

e Controllability
A linear system x(t) = A x(t) + B u(t)
y(t) = C x(t) + D u(t)
is said to be completely state controllable if there exist an input u(t) that can drive the system from any
given initial state x,(t, = 0) to any other desired state x(t).

The system is completely controllable if and only if the controllability matrix Q. = [B AB A*B ... A" 1B]
is of rank n.

e Observability

The linear system is completely observable if every initial state x(0) can be determined from output y(t) over a
finite time interval. C
The system is completely observable if and only if the observability matrix is of rank n. Q¢ = C:A

C A.n—l

[@Nolen




lllustrative exampe

0 1 0 0
A= 0 0 1| B=|0| c=[1 0 O]
-6 -11 -6 1

Compute the controllability and observability matrices and decide if the model is controllable and

observable.
0O O 1
Q.= [BABA?B] =0 1 —6‘ rank(Q,) = 3
1 -6 25
C 1 0 O
wleal-fr ey ewo-s

System is controllable and observable.

To compute the controllability and observability matrix we can use the Matlab functions: ctrb, obsv

To compute the rank of matrix we can use the Matlab function: rank

©N0lo




Poleplacement design

Control system is given by F 5
X(t) = A X(t) + B u(t) Ut - A )'(_(rt\) x(t) ;\*—Z y(t)
y(£) = C x(t) + D u(t) e = S j e =co
= A

Feedback gain matrix K:

The eigen values of the system matrix A are roots of the characteristic polynomial. On application of
the state variable feedback, the eigen values of the matrix A can be adjusted to a desired value.

Following equations are obtained:

‘W' ° u(t) = w(t) — K x(t)
w0, SO 0 e 20 R0 = A + B — K x(0)

f.,; . — H_VF' 1 1 c | VN YT
20 M1 %(6) = (A = B- K)x(©) + Bu(®)
— » K . .
' New matrix of dynamics:
— — A=A -B-K)




llustrative example

—~0,05 0,05 0 0,5
A=]005 =01 005| B=|0
0 005 -01 0 |

The original roots are located: eig(A): ~ P1 = —0,1623
p, = —0,0777

ps = —0,0099

The closed-loop poles are to be placed at: p, = —0,2+ 0,2j
p, = —0,2 — 0,2j

p3 = —1

Determine the feedback gain matrix K.




Solution:

The desired characteristic polynomial:

APp)=(@-p) @w—p2)-—-p3)=(@+02-02))-(p+02+02))-(p+1)=

= p3 + 1,4p% + 0,48p + 0,018

—-005 005 0 ] 05 -005 005 0 0.5k 0.5k, 0.5k |
A-Bk=| 005 -01 005|- 0 [k &k Kk]=| 005 -01 005|-| 0 0 0 | =
0 005 -01| |0 0 005 -01 o 0 0 |

—005-05k 005-05k —05k ]
—| 005 ~0.1 0.03
0 0.05 -0.1 |

det(pl —A—B-k)=p’ +(0,5k, +0,25) p* +(0,025k, + 0.1k, +0,015) p+0,00125; +
0,0025k, + 000375k, +0,000125

Characteristic polynomial:

©N0lo




Comparing the coefficients of the same powers of p we obtain the state feedback gains in matrix K.

0,5k, + 0,25 = 1,4
0,025k, + 0,1k, + 0,015 = 0,48
0,00125ks + 0,0025k, + 0,00375k, + 0,000125 = 0,08

kl == 2,3
k2 == 9,4
ks = 38,2

K=[2,3 9,4 38,2]

Poleplacement design we can solve using Ackermann’s formula implemented in Matlab.

» A=[-0.050.050:0.05-0.10.05:00.05 -0.1];

) B=[ﬁ.5.’ 0: 0 ]Z

» P=[-0240.20-02-0 20-1];  Jf where P is a vector of desired poles
» K=ACKER(ABP)

K=

23000 94000 382000




Pole-placement according to the time of the first overshoot.

The poles location affects the time of the first overshoot. The corresponding dominant complex
conjugate roots can be computed from this empirical formula:

T 3 3

~ - 5o —

p=7¢ ¢ T,

Where ¢ corresponds to two complex conjugated poles: pp=—Cc+ C]:
p2=—C—(j
ps=—k-c

The other roots have to be chosen further away of the imaginary axis.

Im

pl o

p3 R
-(5-10%c - u

p




Linear-quadratic regulator (LQR) design

The theory of optimal control is concerned with operating a dynamic system at minimum cost.

The system dynamics are described by a set of linear differential equations and the cost is described
by a quadratic function is called the LQ problem - linear—quadratic regulator (LQR).

The settings of a controller are found by using a mathematical algorithm that minimizes a cost
function with weighting factors supplied by an engineer.

The quadratic cost function: ~
1
] = E_f (xTQx + uTRu)dt
0

Where: Q,R are weighting matrixes

x is a vector of state variable

u is a vector of inputs
The feedback control law that minimizes the value of the cost is: u(t) = - K x(t)
Where K is given by: K = —R™1BTP




Riccati equation

Matrix P is found by solving the continuous time algebraic Riccati equation:

PA+ ATP— PBR™IBT P + Q=0
Solution can be found in Matlab:
[K,P,L]=LQR (A, B, Q, R)

where: Kis a vector of the feedback gain
P is Riccati matrix - solution of Riccati equation

L is a vector of eigen values of the system: L = eig(A-BK)




Observer

Observer is a dynamic subsystem of a control system that calculates those state variables that can not be
directly measured on an object. If a system is observable, it is possible to fully reconstruct the system state

from its output measurements using the state observer.

X' X
—» F > | P x' = Ax + Bu
y =Cx
2 Xpy = A Xy + Bu+ L(y — yp)
Ym = Cxpy
y_ym +
;4
- E(t) = x(t) — xp(t)
u x! X th—>rg>E(t) - O
—P 5 [ > E'(t) = x'(¢) — x5, (t)
= Ax + Bu — Ax,, — Bu — L(Cx — Cx,,)
4 4
observer El(t) — (A _ LC)E(t)

\ A% for state feedback

@O0




Typical observer model

The output of the observer may be subtracted from the output of the plant and then multiplied by a
matrix L. This is then added to the equations for the state of the observer to produce a so-
called Luenberger observer, defined by the equations below. The variables of a state observer are

commonly denoted by a x,,, or y,, to distinguish them from the variables of the equations satisfied
by the physical system.

The observer is called asymptotically stable if the observer error E(t) = x(t) — x,,,(t) converges to
zero.

The Luenberger observer is therefore asymptotically stable when the matrix (A-LC) has all the
eigenvalues with negative real parts.

For control purposes the output of the observer system is fed back to the input of both the observer
and the plant through the gains matrix K.

u(t) = —Kx,,(t)

We can chose K and L independently without harm to the stability of the systems. The poles of the
observer (A-LC) are usually chosen to converge 3-10 times faster than the poles of the system (A-
BK).

©N0lo




lllustrative example
Assume system:

A=[‘23 _01] C=[1 0]

3 1
det(pl — A) = det lp_+2 p] =p?+3p+2=(p+ D+ 2) p1=-1 p,=-2
Eigenvalues of (A-LC) choice: -6; -6

Desired characteristic polynomial: (p+6)2=p*+12p+36

Characteristic polynomial of Luenberger observer:

. . ~_[-3 —11 _[h -3 —-11 [L 0] _[-3-4 -1
A=4 LC_[Z 0]_[12][1 0]_[2 o]_ll2 0]‘[2—12 0
p+3+1

det(pl — A) = det 241,

1

Comparing the both polynomials:

3+, =12 > 1, =9

9
L =
2+1,=36 - [, =-34 [—34]




lllustrative example in Matlab

You can use place for estimator gain: L = place(A, C,P)
The length of P must match the row size of A.

>> A=[-3-1;2 0];
>> C=[10];
>> P=[-5.9 -6.1]; //The length of P must match the row size of A and be placed separately

>> L=place(A',C',P)'

9.0000
-33.9900
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13. Discrete Time Control System




Analysis of sampled-data control system

The analysis of sampled-data control system is carried out in Z-domain using Z-transform.
The chapter gives explanation of:

e Sampling process

e Z-transform

e Z-transform of some useful function

* Inverse Z-transform

e Reconstruction of signal — minimum sampling frequency
* Difference equations and Z-transfer function

e Block diagram of transfer function

e Stability analysis of sampled-data control system

* Discrete impulse response

» Discrete step response




Sampling process

The sampler converts a continuous signal into a sequence of pulses, wherein the magnitude of the
pulse gives the value of the input signal at the instant of sampling.

The pulse considered is of very short time duration ant thus approximated as an impulse.

The sampled output f(kT) of ideal sampler has a time period T.

: ;s L e L ] !
——0 B

Woaat. W

Sampler — ey

Continuous signal Sampled signal

@O0




Z-transform of discrete function f(kT)

Definition formula: F(z) = Z{f (kT)} = z f(kT)-z7%
k=0

In series form F(z) can be written: F(2) = f(0)z° + f(T)z™* + f(2T)z™2 + fBT)z 3 + - + f(kT)z™*

The value f(t) at sampling instants kT are given by the coefficients z* in term above.

f(0), f(T), f(2T), .... are the values of function f(t) at instants k=1, 2, 3, .... respectively.




A A

Properties of Z-transform

Addition:  Z{f,(t) + f,(t)} = F,(z) + F,(2)
Subtraction: Z{f,(t) - f,(t)} = F,(z) - F,(z)
Multiplication by constant: Z{ a f(t) } = a F(z)
Delayed function: Z{ f(t - kT) } = 7% F(z)
Multiplication by T: Z{ t f(t) } = -T z (dF(z)/dz)

. Z
S tion: -
ummation Z Z{f (kT)} p— F(z)
k=0
Initial value theorem: f(0) = lim F(2)

Final value theorem:  f() = ;i_)n}(z —1)F(z) = Li_r)r}(l —z7F(2)




Z-transform of some useful function
1. Discrete unit step function: f(kt)[ l ] [ lT

_(Lfork=0 1
f(kT)_{Ofor k<0} |

® 0 ERl . aT 4T —t
F(z) = Zf(kT)Z_k = 12941z 141224 .=142z 1472 4..=
k=0

2. Delayed unit step function: T
(1 fork =k ] ] ] !
f (e = ko)T) = {o for k < ko} A |
00 0 ko —kg
F(z) = Z f((k —ky)T)z™* = 1zK0 4 127 Co*D) 4 17=Kkot+2) 4 ... = z7ko (1 4 271 4 272 4 ..) = 1Z_ —
k=0 z
3. Discrete unit impulse function: 4. Delayed unit impulse function:
. 1f07"k=0 Sk — k ={1f0rk:k0}
S(k)_{OforthO} ( O) OfOT'k:/:kO

F(z) = 2{6(k)} = 1 F(z) = Z{8(k — kg)} = 1 - zko




Z-transform of some useful function

4. Exponential function:
f(kT) = e®T

(o]

(00
F(2) = Z f(kT)z™F = Z e T z7k =1 4 70T z71 4 72T 772 4 =a3Tz=3 ... =
k=0 k=0

1 z
C1-—e Tzl z—eal




Table of Z -transform pairs

F(p) f(t) F(2)
1 u, (t) z
P -1
1 t Tz
p? (z—l)2
1 Etz T?z2(z+1)
0’ 2 2(z-1)°
1 1., - (-D* & z
o ﬁt Ial_rgg( k!) aak(z—e”)
1 e & y4
p+a z-e™
1 t.e ™ Tze®'
(p+a)? (z—e™)?
a 1-eg® z(1-e™)
p(p+a) (z2-D(z-e)
a t_l—e’at Tz z(1-e™)
p?(p+a) a (z-1)% a(z-1(z-e™)
o, sinw,t zsinw,T
P+ o, 7° -2zc0sm,T +1
p Cosm,t 2’ —zcosw,T
P’ +w, 2?2 —2zc0sw,T +1
b-a gl g™ z Z
(p+a)(p+b) 7-e® z-gW




LE(p) [f(t) [F@)
(b—a)(p+c) (c—a)e™ +(b—c)e™ z(c-a) , z(b-c)
(p+a)(p+b) z—e T z-e
ab b & @ u oz bz B az
p(p+a)(p+b) l+a—be a b’ -1 (@a-b)z-e ") (a-b)z-e")
a’ 1-(1+at)e™ z oz ale™
p(p+a)? z-1 z-e¥ (z-e ™)
a’ at—2+(at+2)e™ (aT +2)z-27? 2z
2 2 2 + 7 T
p°(p+a) 1 (z-1) z—e
al . aTze™
(Z_e—aT)Z
a’b 2ab - b? it a’ oty z|2ab—b? a’z
p(p+b)(p+a)’ (a-b)’ (a—b)? @a—b)(z—e ) (a-b)’(z—e")
—aT
N ab o 41 N abTze I z
-b (a-b)(z-e*)* z-1
a’hb’ a® 2 a’z z(a+b)
— M _(a+b)-— e +abt - -
p?(p+a)(p+b) a b (a+b) a—b. 8 (a-b)(z-e") z-1
B b’z . abTz
(a-b)(z-e™) (z-1)°
a’h*(p+c) abet +[ab—c(a +b)] - abcTz _ab—c(a+h)z
pz(p+a)(p+b) bz(c—a) u az(b—c) i (Z—:I.)2 z-1
TTap ° " alp ° _ b*2(c-a)  a’z(b-c)
(a-b)(z-e™) (a-b)(z-e™)




Inverse Z-transform

Inverse Z-transform is used to obtain function f(k) from the corresponding Z-transform F(z). The
inverse Z-transform gives the value of the continuous time function f(t) at sampling instants only —
at kT. It does not explain the behavior of continuous time between consecutive sampling instants.

The inverse Z-transform of rational function is obtained by partial fraction and power series
methods.

Partial fraction expansion method

lllustrative example:

z+1 4 -3

F == =
(2) z2—-1,52+0,5 Z—1+Z—0,5

f(KT) = 4- (1)1 — 3 (0,5)k1

f(0) =0
fa) =1
f2)=25

£(3) = 3,25




Inverse Z-transform

Power series method

Using long division as follows:

F@)=Q—-z1: (1-2z14+2z2)=2+4+32z"14+4z"2+ -

The first few terms of f(kT) at the sampling instants k=0, 1, 2, 3 ... are given by the F(z) series:

f(0) =2
f() =3
f(2)=4

The power series method required long term division to get more terms, using partial fraction
decomposition appears to be more convenient.

©N0lo




Reconstruction of sighal — minimum sampling frequency

The sampler output contains original components of the input frequency w, and in addition complementary
high frequency components.

Flio) F* () (8 {Flo)
T sl Mg <2C01' ® >2(D1
Sampling frequency, ®Ws MW
4 F(jo) leii s € b8 X
oot Ly bk by )
i e sl a Lacdl s, 3 > -20)
—20 “‘Ds\ 0 ‘Ys 20 @ § "‘°s /“”1 0 ‘01 2ms
-0
—(’)s ®g @y S _é"
i i ' '"2_ —2_-
e o Sampler output frequency Sampler output frequency
Sampler input frequency spectrum. s < 2. spectrum : s > 20
Shannon-Kotelnikov theorem:
27 , Complementary frequency components overlap each other. The original signal is not
We =—< 20
STT ' reconstructed.
21 . . ..
ws =~ > 2w, The original frequency component is isolated from complementary components, the

original signal is reconstructed.

@O0




Differential equation and Z-transfer function

The analysis of sampled-data control system can be carried out in terms of difference equation.

The time function at the sampling instants can be written as follows:

y(k—2)+3y(k—1) + 2y(k) = 2u(k — 2) + 3u(k — 1) + u(k)

The Z-transform is related to difference equation in a similar manner as the Laplace transform to

differential equation. Z-transform converts difference equation with constant coefficients into algebraic
equation in terms of ,z“ The initial data is already includet.

z7%Y(z2) —z71-y(0) —z7%2y(1) + 3z71Y(2) — 3z 1y(0) + 2Y(2) =
=2z"2-=2z"1u(0)—2z%u(1) + 3z7U(2) — 3z71u(0) + U(2)
y(k), Y(z) is considered to be the output of a control system

u(k), U(z) is considered to be the input of a control system

The transfer function G(z) of a control system is defined as the ratio of the Z-transform of the output
variable Y(z) to the Z-transform of the input variable U(z) assuming all initial conditions as zero.

U(z) Y(z)
— | 6lz) —>

©N0lo




Z-transfer function

Y(2)(z72+3z71+2)=U(2)(2z7%2+3z71 +1)

Y(z) 2z77+3z7'+1

G(z) = —
(2) U(iz) z2+3z71+2

Transfer function generally:

vik)+a vk-1)+ .+ avkn+l) +aylk-n) =
=b_u(k) + b_uk-1)+ ... + b y(k-n+1) + bu(k-a)

Y(z) bpz ™+ bp—12" D 4 .. 4 b,

G(z) = =
@) U(z) apz"+ap_1z~™ D+ +aq

Or

Y(Z) _ bo + blz + -+ mem
U(z) ag+az+-+a,z"

G(z) =




Block diagram of transfer functions

a) Each block is sampled

a) Samplerin the input of the first block




Block diagram of transfer functions

Closed-loop control system:

Error sampling




Stability analysis of sampled-data control system
The stability of a sampled-data control system is determined by the location of the roots of
characteristic equation (poles of overall transfer function).

The stability region in z-plane corresponding to p-plane is located by mapping from p-plane to z-
plane.

UNSTABL o UNSTA8Le -
DAl i J et 2
7 i i w1 s
7 STABLE STA‘BLE
STABLE UNSTABLE R, ; R -R, ' LSTABLE - UNSTABLE
REGION REGION - : g i REGION REGION
REGION REGION
! ]
REGION : REGION
p-plane Z-plane Z-plane p-plane

If it is no simple to determine the roots, they can be identified by changing variable from z to w.
This change of variable maps the interior of the z-plane unit circle into right-half of complex w-
plane, while the exterior of the z-plane unit circle is mapped into left-half w-plane.

This mapping is known as bilinear transformation. , _ wtl

Therefore the Hurwitz criterion can be applied. w—1

©N0lo




ol . +1
Bilinear transformation z=:——

w

lllustrative example: Determine the stability of the control system given by transfer function.

z2+0,2z—0,5
z3—1,22z2 4+ 0,45z — 0,05

G(z) =

Characteristic equation:
A(z) =23 —-1,22>+0,452—-0,05=0

Bilinear transformation:

w+1 3 w+1 2 w+1

) -12{——| +045|——|—-0,05=0

w—1 w—1 w—1
w+13-12w+1)?*w—-1+045(w+1)(w—-1)>-0,05(w—-1)3=0

02w3 + 1,5w? +3,6w+2,7=0
Hurwitz criterion:

1,5 2,7

02 36 =4,86>0

H=|




Solved example

Determine the pulse transfer function and stability of the control system.

e oS o ; 6y(p) = —
~ S P+ 05
10 10

Go(p) = —

s(0) » " p+05

6.(2) = 10 z z B 10z(1 — e~ 9°T)

S T T (= e 98T | T 22 — 2(1— e 05T) + e 05T

10z(1 — e~057) -
G.(z 2 _ — e~ 05T —0,5T 10z(1 —e™™

G..(2) = s(2) 22—z —-e %) te B ( )

1+ Gs(z)

{4 10z(1 — e~95T) 722 —7z(11e795T — 9) + ¢=05T
72 — z(1 — e~ 05T) 4 ¢=05T

A(2) = z%2 —z(11e7%°T — 9) 4 70T




Solved example

Determine the pulse transfer function and stability of the control system.

E(p) e(kT) Glp)

L J

)

n

N\

=

\—’/
|

'y

A(2) = z%2 — z(11e79%°T — 9) 4 70T

Fot the sampling time T = 0,5:
z24+0,42z+0,78=0

z1, = —0,21 + 0,85 — System is stable, all the roots lie within unit circle of z-plane.
For the sampling time T = 1,0:

z? — 2,332+ 0,606 = 0

z; = +2,10317
7, = +0,2983 — System is unstable, one root is located outside of unit circle.

Conclusion: the sampling time can influence the stability of the system.




Discrete impulse and step response

* Discrete impulse response - is inverse Z-transform of the output g(kT), if the input is specified as
unit impulse (Dirac impulse) 6(k) = 1 for k=0:

u(k) = 6(k) = 1 for k=0
U(z) = 1
Y(z) = G(z) U(z)
Y(z) = G(z)
* Discrete step response — is inverse Z-transform of the output h(kT), if the input is specified as
discrete unit step:
U(k) =1 fork=>0
Z
U(Z) = m
H(z) = G(z) U(z)

Z
H(Z) = G(Z) m
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Sampled-data control system

Control system: T J‘m
%@// —1 D) _Tt“““’/u(kﬁ Ho(p) || Gs(P) g(l‘)
* G(p) .ere L-transfer function of controlled system
* D(2) correnen Z-transfer function of discrete controller (PC)
* Hy(p)wverene zero order hold
o w(t) ... system input (or set point or reference), desired steady-state value of output
e e(t) ... control deviation, error, difference between desired value and controlled value
o u(t) .oereennen, actuating signal
L I sampling time of samplers

LI/ (9 I controlled value, output of control system




ZOH - zero-order hold

The original signal is reconstructed from the sampled signal by using a hold circuit. To use a hold
circuit enables to hold the signal between two consecutive sampling instants.

Zero-order hold holds the output signal at a fixed level between two consecutive sampling instants.

The output of ZOH:

h(t) = u() —u(t—T) —— ) ———[ 7on |
The transfer function of ZOH: oy | | ! T
it
h(f){
o(1) A e - T_ :
T o
o) 7 0 r




Total Z-transform of the continuous part of the control circuit

1 _ __Tp

G.(0) = Hy(5) G, ®) = =G, (v)
. [1—e® ] . {G(p)} P()
G.(2)=Z G.(p=(1-z1z 2! =
=21 [~ T oe
lllustrative example:
l_e—PT
G, = o—a) H,@p) =
From Z-transform table:
- -PT ' - _ P
Gc(z):Z“_e 1 | _z-1 1= (-e )z _
1 p p(p-+(1)J 2 [ (z-D2 a(z-D(z—e)

T = sampling time




Example

Sampling time T=5s, consider zero order hold H,(p).

|
~(5p+ D) +1)

Gs(p)

Solution:
[1-e?” 1 | 0,54182+0,0861
| P P+l +D)|  22-0.3746z +0,0025

G.(z) =Z

Solution in Matlab:

1 _ 2 3 .
>>num=1 >> [numd,dend]=c2dm(num,den,5,'zoh") >> printsys (numd,dend, 'z')
T numd = num/den =
>>den=[561] 0 05418 0.0860 0.5418 =z + 0.0860
den = dend= | | TTTTmmmmmmmomosso—mmmoes
5 6 1 1.0000 -0.3746 0.0025 z~2 - 0.3746 =z + 0.0025




Synthesis of sampled data control system

________________

s -

T ' "
. .- n :
wit) >?ef’!/ o " Y mm (50 e | “

1. According to the control transfer function requirements

L. D()G.(2) Di-y— L. _G(3)
G"'(-)_HD(_:)-GC(:) ) G.(2) 1-G,(2)

2. According to the disturbance transfer function requirements

Z) L GG -GE)
1+G.(2)D(2) G.(z)

D(z) ... transfer function of discrete regulator
H,(z) ... transfer function of zero-order hold

G(z) ... total Z-transform of the continuous part of the control circuit




=l A =

Control transfer function requirements

The physical feasibility of the discrete regulator
Regulation to zero steady state deviation
The final duration of the transition process

Stability of the control circuit




Control transfer function requirements

1. The physical feasibility of the discrete regulator:

( ) P( ) o .= 1o . =—(m+1) +
()( ') :‘Jm‘ = Sm+l = -
] =i
f( ) . 1
@) =35 5= o™ T
D(z) = 1 J‘;*:‘”+ frn 2™
= — — . :
g,z m +g vz {m+)+”_ 1— f +fn+1 - {n+) +.)
1
= -~ ~—(n+1)
D(Z) B N - ——{(m+1) T 'U?H = " +h‘n+l f- ’ +)
om - Smel <

Conclusion: the control transfer function must begin with a negative power of -1




Control transfer function requirements

2. Regulation to zero steady state deviation

lime(nT) = 1'1111(1 —=YE(0) = 1_1'1111(1 —=H[W(2)-Y(2)|=0

I;(:) = GH‘(:) ' Hr(:)
1_i1111(1 —z )W ()[1-G,(2)]=0

For different types of the input signal: If there are any others requirements:
a) W) =1 (konstant input) 1-G,(2)=(1-27")-G(2) G, (z)==z"

b) W=t (linear increasing - ramp fen) 1-G,(2) = (1 -7 G(2) Gp(z)=2:"-=

c) W)= (parabolic input) 1-G,(2)=(1-z7)"G(z) Gp(z)=3 =" =3z7+:7
Where G(z) is the optional polynomial G(z)=gy+&z " + g7 7 +--

If there are any others requirements: G(z)=1




Control transfer function requirements

2. Regulation to zero steady state deviation

- = Yiz)= == + = + I+
b) Gy(z)=2:"-=" Yz)= 2214 224 27 4
C) Gp(z)=3:7"-3:7+:7 V)= 3 =1 4 =7 .
’ f SN
3 3 Yo
’f- b\
SN
2 + ‘!% \\
il e ih\\ /:;\_\
1 ,z/'/ ; A\ | »
/ &> —
7 i e
9 T 21_'."\ /ar T - -




Control transfer function requirements

3. The final duration of the transition process
The control transfer function must fulfilled this condition: G,(z) = P(z)-R(2)
Where P(z)is the numerator of the system transfer function

R(z) is a optional polynomial:  R(z)= 7, + 52" + 27+ ...

. _ P(z) D :ﬂ
Ge) = =2
D(z)-G.(z) _ A(z)-P(z)

G,(z)

T1+D(2)-G.(z)  B(2)-0(z)+ A(z)-P(2)




Solved example
1

Transfer function of the system: G = Input: w(t)=1
y s () Gt (pt D) p (t)
Zero-order hold: Hy(p) = 1_ le—pT
p p

Sampling time: T =5s
We need zero steady state deviation and final transient time.

Solution:
0.5418-+0.0861

Total Z-transform of the continuous part of the control circuit:  G.(2) =— .
-7 —0.3746z+0.0025

Request conditions:

1. Zero steady state deviation: 1-G, (z)=(1-z")-G(z) = (1-z) (1 +g:z™)
g, =1
So

20

2. Final transient time: G, (z)=P(z)-R(z) =(0,5418z + 0.0861) 7> -

'n — G
r=20




Solved example

Comparing coefficients of the both polynomials:

1-(0,54182+0,0861)r, 27 =(1-z7") (1 + g,z7).

0.5418-1, =1-g, 1y =1,5926
0,0861-, =g g1=0.1371
Required control transfer function: Gu(z)=0.8621-"+0,1371 =7

Discrete regulator:  D(z) =——- _ 1 B C)
G.(z) 1-G,(2) 1-0.8629-"—0.1371=2 _ E(=)

] G,(z) 1,5926—-0,5965z""+0,0039z=  U(z

Difference equation:  E(z)—0,5965E(z)z"" +0,0025E(z)z" =U(z)—0,8629U(z)z" —0,1371U(2)z"~
e(k)—0.5965e(k —1)+0,0025e(k —2) =u(k)—0.8629u(k —1)— 0,137 Lu(k —2)

Control algorithm for actuating signal:

u(k)=e(k)—0,5965e(k —1)+0,0025e(k —2)+0,862%:(k —1)+0.1371u(k - 2)

©N0lo
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Modelling in Matlab - Simulink

Block diagram and step response:

Step

1.5926-0.59657 +0.003972

1-0.86297-10 137172

0.5418z+0.0861

72.0.37467+0.0025

Discrete Regulator D{(z)

Total Z-transfom
of the continuous part
Gc(z)

[#] Scope

—

o X

B[R w s % B a K8

i




Control transfer function requirements

4. Stability of the control circuit

z+a

If: G.(z) =
(2) -+b

-0.(2) Where: la|=1 is unstable zero
Ib/|=1 is unstable pole

Then the polynomial of control transfer function must contain the terms: G, (z) =(z +a)-M(z)
1-G (z)=(z+D)N(z)

Then the controller:

1 +Gw(:) :(_:+b)' 1 l(:+n)+ﬁ«1‘(:): M(z)
T G.(2) 1-G(z) (z+a) 0.(z) (z+D)-N(z) N(z)-0.(z)

D(z)




Disturbance transfer function requirements

1. The physical feasibility of the discrete regulator

T J\({) :
t - X ZukT t
M@/: | DE) +'-'l-"",-?“*~*’/:/ﬂ( A o) |H s v
(2) c(-) :§1-:_1+§ z T+
1+ G (z)D(z)
. P(z _ ~
G.()= ) _ Pz 4D,z +
0o(z)
G(z)-G, (= _ -
D(z) = (=6, () —d1-1+d: + .. — Pr=g




Disturbance transfer function requirements

2. Regulation to zero steady state deviation
E(z)=-G, )V (z).
lime(nT) =lm(l— :_I)E(:) = —]_iJlll{l - :'1)6}, (z)V(z)=0

n—w =l

For different disturbance signal:

v()=u, (konstant invut) v Gp(@)=(1-27)G(2)

v(ty=ar (linear increasing - ramp fcn) - G,(z2)=(1-z"")"-G(2)

v(t)=br* (parabolic input) “ G(@)=01-")G(2)
Generally:

G,(2)=(1-=H""-G(2)

Where G(z) is the optional polynomial:  G(z) =g +gizt @+




Disturbance transfer function requirements

3. The final duration of the transition process

G,(z) = P(z)-R(2)
3. Stability of the control circuit

G, (z2)=(z+a)-M(z) la| =1 Unstable zero
1-G, (z2)=(z+D)N(2) b =1 Unstable pole

These conditions remain the same.




Solved example

Transfer function of the system: G (p) = L Disturbance input: v(t) = 1

L (Sp+D(p+1)
Zero-order hold: Hy(p) =———e7PT
p b

Sampling time: T =55
We need zero steady state deviation and final transient time.
Solution:

Total transfer function of the continuous part:

[1—ePT ] |- oz-1 1 | 05418 +0.0861 P(=)

G =Z 7 —
T G| L 7 | pGer oD, 2 o0.3746:40.005 | O()

=3
Using Matlab:  [NUMd, DENd] = C2DM(NUM,DEN, Ts, 'method")

[NUMd, DENd]=C2DM ([1],[5 6 11,5, 'zoh")




Solved example

Requirements:
1. The physical feasibility of the discrete regulator: g, =p,; = 0,5418

2. Regulation to zero steady state deviation: G, =(1-z")g,+g,-z" +--)=(1-2) (g2 +g,27)
3. The final duration of the transition process: G, = P(z)-(r, +7-z27 +--- ) =(0,5418 z7 +0.,0861z" ) (1 +7z")

Comparing coefficients of the both polynomials:

g, = 0.5418
g, = 00861
= -1
Required disturbance transfer function: G,=0,5418-z7"-0,4557-27 -0,0861- =
Discrete regulator: D(z) = —2 ! I 90 _1-00C)R() _

G,(2) G.(2) P(R(z) P(z) P(2)R(2)
_ 1,3746-0,3771z7 40,0025z U(2)
0.5418-0.4537-7"-0.0861z"  E(2)




Solved example

“

Difference equation:  1,3746E(z)-0,3771E(z)z"" +0,0025E(z)z7> = 0,5418U(z) - 0.4537U(z)="" —0,0861U/ (=)=
1.3746e(k)—0.3771e(k —1)+0,0025¢(k —2) = 0.5418u(k)—0.4537u(k —1)—0.086 lu(k —2)

Control algorithm for actuating signal:

u(k) = :4]8 (1.3746e(k) —0.3771e(k — 1)+ 0.0025e(k — 2) + 0,453 7u(k —1)+ 0,086 1u(k —2))
Control transfer function: G, (z) = DE)G.(2) _ G,(2)D(z) = P()R(=) 1-0(2)R(2) _
1+D(2)G.(2) P(2)R(z)

=1-0(2)R(z) =1.3746-0,3771z7" 40,0025z

Simulation in Matlab-Simulink: disturbance elimination.

Disturbance
+ .| 0.54182+0.0862

X+ .| 1.374622-0.37747+0.0025 " > :
‘ 0.541822-0.45572-0.0861 aa 2°-0.37462+0.0023
Subtract

Discrete Discrete
Transfer Fcn of Controller Transfer Fcn of System




Solved example

Simulation in Matlab-Simulink: step response.

>+ | 1.374672-0.37742+0.0025 | 0.54187+0 0862
- - | 0.541822-0.45572-0 0861 ! 72.0.37462+0.0025
Inputwit=1 | o \biractt
Discrete Discrete
Transter Fcn of Controller Transfer Fcn of System




PSD - controllers

There are a three simple types of controllers according to the way they process a signal.

Type of controller u(7) u(k) U(z)
P (P) ro.e(t) ro.e(k) ro.E(2)
I k -
S o "-1{9(3')‘” r_IT; e(7) r_lTjE(:)
D D . de(r) . e(k)y—e(k—1) Ty = j 1 E(2)

dt T T

e(k)—e(k—1)

k
Actuating signal in time domain:  u(k) =r,.e(k)+7.,T) e(i)+r,
i=1

09 = K| e(k) + =3 e(i) + 22 (e(k) - el 1)
= : T e T e e

i i=l

Where: 1=K, I.=K/r1. T4= rdK

T ... sampling time




PSD - controllers

Actuating signal in Z-transform: U(Z)_K{E(:HE;E(:) =71 —E(z )}
I =—1 T

i

K(z? — 2+l (-1
. p()=2C g1+ L= L: 1]: T
Discrete controller: E(2) rLz-1 T =z | 2(z-1)
T T ) T T, .
D(Z) . — i 1 — . 1 -
-t -z 1-z7 1-=z E(z)

Actuating signal in time domain: = u(n)—u(n—1)=de(n)—de(n—1)+d,e(n-2)=
Where: k(s £ . T_) ’ u(n)=u(n-1)+d,e(n)—de(n—-1)+d,e(n—-2)
T

T
d, :&(1+2?ﬂf)

T
d, =K%
T




PS — controller:

Where:

PD — controller:

Where:

PSD - controllers

] —d =
D(Z):"”n%

d@:K(HE)

d =K

D(z)=d,—d:z™

d,=K(1+-2)

fflzK—d




Solved example

] 1 . : ] _p+1
For the system: G, = was designed the continuous PI controller: G, =0.5 i

T (Gp+D(p+]) p

: : 1, —d.:
Determine corresponding PS — controller  D(z) = (”—1_1

Solution:
: _Sp+1 . 1 S _
Rearrange into standard Pl form: Gz =0.5 ' 2 3(1+§—) K=25 T =5
...p
. T 1
Discrete controller:  d, = A(l—?) =2 :1(_1—;) =3
d =K=2.5
3-2.5-70 Uz
D(:) — — — ( )
11—z E(2)

Actuating signal: u(n)=u(n—1)+3e(n)—2.5e(n-1)




Solved example

Simulation in Matlab-Simulink:

»+ . 3z7-2.5 N 0.1084z+0.0172
_ ' i z-1 ] 720 37462+0.0025
MpUtWO=T | o ptract
Discrete Discrete
Transfer Fcn of Controller Transfer Fen of System

r

>+ | 5°0.55+0.5 1

- 2
[nput w(t)=1 Subtract 5 95-+65+1

L

Fl-controller Transfer Fcn
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