

COORDINATION COMPOUNDS

2017/1

Table I-10.7 Polyhedral symbols (continued)

Dílo podléhá licenci Creative Commons 4.0 Česko Uveďte původ - Zachovejte licenci

Page 1/1

Characteristic properties

property	hard acids	soft acids	soft bases	hard bases
electronegativity	0,7 – 1,6	1,9 – 2,5	2,1 - 3,0	3,4-4,0
ionic radius [pm]	< 90	> 90	> 170	~ 120
charge	\geq +3	\leq +2		

HARD AND SOFT LEWIS ACIDS AND BASES

Wulfsberg, Inorganic Chemistry:

Table 5.1

Hard and Soft Acids and Bases^a

^aNumbers in parentheses are oxidation numbers. The number below each atomic symbol is the Pauling electronegativity of that element.

Figure 9.6: Helical structure 2 is capable of translocating iron ions between binding sites based on their redox state.^[10] Reprinted with permission of Nature.

3/2017 Orientation of the main geometries

Energy Levels of d Orbitals in Complexes of Various Geometries^a

\mathbf{CN}^{b}	Geometry	d_{z^2}	$d_{x^2-y^2}$	d_{xy}	d_{xz}	d _{yz}	Largest Splitting
2	Linear ^c	1.028	-0.628	-0.628	0.114	0.114	0.914
3	Trigonal ^d	-0.321	0.546	0.546	-0.386	-0.386	0.867
4	Tetrahedral	-0.267	-0.267	0.178	0.178	0.178	0.445
4	Square planar d	-0.428	1.228	0.228	-0.514	-0.514	1.000
5	Trigonal bipyramid ^e	0.707	-0.082	-0.082	-0.272	-0.272	0.789
5	Square pyramid ^e	0.086	0.914	-0.086	-0.457	-0.457	0.828
6	Octahedron	0.600	0.600	-0.400	-0.400	-0.400	1.000
6	Trigonal prism	0.096	-0.584	-0.584	0.536	0.536	0.680
7	Pentagonal bipyramid ^e	0.493	0.282	0.282	-0.528	-0.528	0.810
8	Cube	-0.534	-0.534	0.356	0.356	0.356	0.890
8	Square antiprism	-0.534	-0.089	-0.089	0.356	0.356	0.445
9	Tricapped trigonal prism	-0.225	-0.038	-0.038	0.151	0.151	0.189
12	Icosahedron	0.000	0.000	0.000	0.000	0.000	0.000

^{*a*} Units of Δ_0 , the octahedral crystal field splitting, assuming the same overall charge density and distance. [Adapted from J. E. Huheey, E. A. Keiter, and R. L. Keiter, *Inorganic Chemistry: Principles of Structure and Reactivity*, 4th ed., Harper-Collins, New York, 1993, p. 405.]

^{*b*} Coordination number = CN.

^c Ligands lie along z axis.

^d Ligands lie in xy plane.

^e Pyramid base in xy plane.

****	EUROPEAN UNION European Structural and Investing Europe	MS_
· · · · ·	Operational Programme Research,	MINISTRY OF EDUCATION
***	Development and Education	YOUTH AND SPORTS

TABLE 4.2 Octahedral Crysta	al Field Splitting En	ergies Δ_a , cm $^-$	1 VIOLIT. 1300
(M') ²⁺	(M') ³⁺	(M") ³⁺	(M ''') ³⁺
	Cr ²⁺ , Cr ²	³⁺ , Mo ³⁺	
$\frac{[CrCl_6]^{4-}}{[Cr(H_2O)_6]^{2+}} \frac{13,000}{14,000}$ $[Cr(en)_3]^{2+} \frac{18,000}{18,000}$	$[CrCl_6]^{3-} 13,200 [Cr(H_2O)_6]^{3+} 17,400 [Cr(NH_3)_6]^{3+} 21,500 [Cr(en)_3]^{3+} 21,900 \\[Cr(en)_3]^{3+} 21,900 \\[C$	[MoCl ₆] ³⁻ 19,20	00
	$\frac{[Cr(CN)_6]^3}{Co^{2+}Co^{3+}}$. Rh ³⁺ . Ir ³⁺	
$\frac{[Co(H_2O)_6]^{2+} 9,300}{[Co(NH_3)_6]^{2+} 10,100} \\ [Co(en)_3]^{2+} 11,000$	$\begin{array}{l} [\text{Co(H}_2\text{O})_6]^{3+}18,200\\ [\text{Co(NH}_3)_6]^{3+}22,900\\ [\text{Co(en)}_3]^{3+}&23,200\\ [\text{Co(CN)}_6]^{3-}&33,500 \end{array}$	$\begin{array}{cccc} [{\rm RhCl}_6]^{3-} & 20,0 \\ [{\rm Rh(H}_2{\rm O})_6]^{3+} & 27,0 \\ [{\rm Rh(NH}_3)_6]^{3+} & 34,1 \\ [{\rm Rh(en)}_3]^{3+} & 34,6 \\ [{\rm Rh(CN)}_6]^{3-} & 45,5 \end{array}$	$\begin{array}{cccc} 00 & [\mathrm{IrCl}_{6}]^{3-} & 25,000 \\ 00 & \\ 00 & [\mathrm{Ir(NH}_{3})_{6}]^{3+} & 41,000 \\ 00 & [\mathrm{Ir(en)}_{3}]^{3+} & 41,400 \\ 00 & \end{array}$
	Mn ²⁺	, Mn ³⁺	
$\frac{[MnCl_6]^{4-}}{[Mn(H_2O)_6]^{2+}} \frac{7,500}{8,500}$ $[Mn(en)_3]^{2+} 10,100$	$[MnCl_6]^{3-}$ 20,000 $[Mn(H_2O)_6]^{3+}21,000$		
2	Fe ²⁺	, Fe ³⁺	
$[Fe(H_2O)_6]^{2+}$ 8,500 $[Fe(CN)_6]^{4-}$ 32,800	$[FeCl_6]^{3-} 11,000 [Fe(H_2O)_6]^{3+} 14,300 [Fe(CN)_6]^{3-} 35,000$		

Changes in Crystal Field Stabilization Energies^a

t"			CFSE ML ₆ (oct)	CFSE ML ₅ (sp)	ΔCFSE	1	
J1			0.40	0.46	+0.06		
12			0.80	0.91	+0.11		
ł ³			1.20	1.00	-0.20		
	Lo	w-spin-strong fi	ield		Hi	gh-spin–wea	k field
	CESE	CESE			CFSE	CFSE	
	ML	ML			ML ₆	ML ₅	
	(oct)	(sp)	ΔCFSE		(oct)	(sp)	ΔCFSE
d ⁴	1.60 - P	1.46 - P	-0.14		0.60	0.91	+0.31
15	2.00 - 2P	1.91 - 2P	-0.09		0	0	0
16	2.40 - 2P	2.00 - 2P	-0.40		0.40	0.46	+0.06
d ⁷	1.80 - P	1.91 - P	+ 0.11		0.80	0.91	+0.11
			CFSE	CFSE			
			ML	ML ₅			
			(oct)	(sp)	ΔCFSE		
d^8			1.20	1.00	-0.20		
d9			0.60	0.91	+0.31		
110			0	0	0		

^aThe CFSEs (in units of Δ_o) for octahedral (oct) and square pyramidal (sp) fields are shown followed by the change in CFSE for the process ML₆ (octahedral) \rightarrow ML₅ (square pyramidal). A + indicates a gain in CFSE during the process, and a – indicates a loss in CFSE.

4/2017 Mulliken symmetry symbols

Mulliken Symbol	Interpretation
a	Non-degenerate orbital; symmetric to principal C _n
b	Non-degenerate orbital; unsymmetric to principal C _n
e	Doubly degenerate orbital
t	Triply degenerate orbital
(subscript) g	Symmetric with respect to center of inversion <i>i</i>
(subscript) u	Unsymmetric with respect to center of inversion <i>i</i>
(subscript) 1	Symmetric with respect to C ₂ perpendicular to principal C _n
(subscript) 2	Unsymmetric with respect to C_2 perpendicular to principal C_n
(superscript) '	Symmetric with respect to s _h
(superscript) "	Unsymmetric with respect to s _h

Table 1.3 Splitting of the orbitals in T_d , D_{4h} , D_3 and D_{2d} symmetry fields.

	T _d	D _{4h}	D ₃	D _{2d}
s	a ₁	a _{1g}	a ₁	a ₁
р	t ₂	$a_{2u} + e_u$	$a_2 + e$	$b_2 + e$
d	t ₂ + e	$a_{1g} + b_{1g} + b_{2g} + e_{g}$	$a_1 + 2e$	$a_1 + b_1 + b_2 + e$
f	$a_2 + t_2 + t_1$	$a_{2u} + b_{1u} + b_{2u} + 2e_u$	$a_1 + 2a_2 + 2e$	$a_1 + a_2 + b_2 + 2e$

FIGURE 5.5

Rate constants for water exchange for various ions: $[M(H_2O)_6]^{m+} + H_2O^{18} \xrightarrow{k} \\ [M(H_2O)_5(H_2O^{18})]^{m+} + H_2O$ Data are tabulated as the log of the rate constant at 25°C. Inert hydrated ions, those that only slowly exchange water molecules between the hydration sphere and bulk water structure, are given on the left, and labile hydrated ions are on the right. (Ref. 7.)

Radii of the +2 ions (a) and the +3 ions (b) as a function of the $3d^n$ electron configuration. Open circles represent high-spin (weak-field) ions; closed circles represent low-spin (strong-field) ions. [Adapted from R. D. Shannon and C. T. Prewitt, *Acta Crystallogr. Sect. B*, **26**, 1076 (1970).]

Microstates, spectroscopic terms

Letters Used in Atomic Term Symbols	Table 1	7.1				
	Letters	Used in	Atomic	Term	Symbols	

Letter	S	Р	D	F	G	H	Ι	K
Value of L	õ	1	2	3	4	5	6	7
Degeneracy of L	1	3	5	7	9	11	13	15

17.1 Electronic States and Term Symbols

Table 17.2A

Multiple Terms of Various Electronic Configurations

s^2 , p^6 , and d^{10}	15
p and p^5	^{2}P
p^2 and p^4	${}^{3}P, {}^{1}D, {}^{1}S$
p^3	$^{4}S, ^{2}D, ^{2}P$
d and d^9	^{2}D
d^2 and d^3	${}^{3}F.{}^{3}P.{}^{1}G.{}^{1}D.{}^{1}S$
d^3 and d^7	${}^{4}F, {}^{4}P, {}^{2}H, {}^{2}G, {}^{2}F, {}^{2}D, {}^{2}D, {}^{2}P$
d^4 and d^6	⁵ D. ³ H. ³ G, ³ F. ³ F. ³ D, ³ P, ³ P, ¹ I, ¹ G, ¹ G, ¹ F, ¹ D, ¹ D, ¹ S, ¹ S
d ⁵	⁶ S, ⁴ G, ⁴ F, ⁴ D, ⁴ P, ² I, ² H, ² G, ² G, ² F, ² F, ² D, ² D, ² D, ² P, ² S

(2y)!x!(2y-x)! N = ·

N – the total number of ways that x electrons can be placed in yorbitals of equivalent energy with either of two different spins = number of microstates

SOURCE: From J. C. Davis, Jr., Advanced Physical Chemistry: Molecules, Structure, and Spectra, 1965, The Ronald Press Co., New York.

Table 17.28 The Splitting of Atomic Electronic States in Complexes of O_h Symmetry

Atomic term	Number of states	Terms in O_{ii} symmetry
S	1	A_{1g}
P	3	T_{1g}
D	5	$T_{2g} + E_g$
F	7	$T_{1g} + T_{2g} + A_{2g}$
G	9	$A_{1g} + E_g + T_{1g} + T_{2g}$
Н	11	$E_{g} + T_{1g} + T_{1g} + T_{2g}$
I	13	$A_{1g} + A_{2g} + E_g + T_{1g} + T_{2g} + T_{2g}$

Table 17.3

Arrangement of Microstates for p^2 Electron Configuration According to Their Total Spins and Angular Momenta

Total spin M_S^a $M_L = 2$	1	$ \begin{array}{c} 0 \\ 1(\uparrow\downarrow)0()-1() \end{array} $	-1
$M_L = 1$	1(†)0(†)-1()	$1(\uparrow)0(\downarrow)-1()$ $1(\downarrow)0(\uparrow)-1()$	1(1)0(1)-1()
$M_L = 0$	1(†)0(~)-1(†)	$\begin{array}{c} 1(\)0(\uparrow\downarrow)-1(\)\\ 1(\uparrow)0(\)-1(\downarrow)\\ 1(\downarrow)0(\)-1(\uparrow) \end{array}$	$1(\downarrow)0()-1(\downarrow)$
$M_L = -1$	$1()0(\uparrow)-1(\uparrow)$	$1(\)0(\uparrow)-1(\downarrow) \\1(\)0(\downarrow)-1(\uparrow)$	$1()0(\downarrow)-1(\downarrow)$
$M_{L} = -2$		1()0()−1(↑↓)	

^a Total spin $M_S = \text{sum of spins} (+\frac{1}{2} \text{ or } -\frac{1}{2})$ of individual electrons.

Ex: G. Wulfsberg, Inorganic Chemistry, University Science Books, 2000

(ງ)

5/2017

883

<u>GROUND STATE</u> TERMS IN OCTAHEDRAL SYMMETRY

Weak field = high-spin arrangement

		$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$	$\uparrow \uparrow \uparrow$
$d^1 = {}^2T_{2g}$	$d^2 = {}^3T_{1g}$	$d^3 = {}^4A_{2g}$	$d^4 = {}^5E_g$	$d^5 = {}^6A_{1g}$
$\boxed{\uparrow}$	$\boxed{\uparrow}$	\uparrow	$\uparrow \uparrow \lor$	
$\mathbf{A} \mathbf{A} \mathbf{A}$				
$d^6 = {}^5T_{2g}$	$d^7 = {}^4T_{1g}$	$d^8 = {}^3A_{2g}$	$d^9 = {}^2E_g$	$d^{10} = {}^{1}A_{1g}$

Figure 17.2

Energy levels of a d^2 ion in an octahedral complex as the strength of the ligand field is varied. (Since all energy levels are *gerade*, the "g" has been omitted.) [Adapted from F. A. Cotton, G. Wilkinson, and P. L. Gaus, *Basic Inorganic Chemistry*, 3rd ed., John Wiley & Sons, Inc., New York, 1995; p. 527.]

