

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture I

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author of the specific teaching material in order to remedy the situation.

Dílo podléhá licenci Creative Commons 4.0 Česko Uveďte původ - Zachovejte licenci

Biotechnology in Food Industry

Introduction to the topic – common principles of microbial technologies I

Content

- Feedstock and its adjustment
- common and future feedstock
- Sterilization, cleaning

Cultivation of microorganisms composition of cultivation medium

- Carbon starch, saccharose
- Nitrogen ammonium ionts
- Phosphorus salts
- Macroelements- K, S, Ca, Mg, Na
- Microelements (trace elements) Fe, Zn, Mn, Cu, Co, Se
- Complex sources yeast autolysate, whey..

Feedstock of first generation

a) saccharose containing

molasses (waste stream from sugar industry), sugar beet,

sugar cane

b) **starch containing** corn, maize, potatoes, cassava

c) Other - jerusalem artichokes (inulin)

Mollasses (sugar beet juice)

- Sucrose content around 50%, utilized. N 0.18-0.65, inorganic salts, organic N-compounds, colorants, colloids
- Buffering capability alkaline pH
- Microbial pollution
- Variable quality fermentation test

Mollasses cultivation medium

- Clarification acidic or alkaline
- Centrifuging sludge separators
- Pasteurization, sterilization
- Nutrient supplementation NH₄OH,
 (NH₄) ₂SO₄, K₂HPO₄, MgSO₄, biotin ...
- Acidification
- Adjustment of concentration

Feedstock pre-treatment Centrifugal process separates crystals and Beets syrup Syrup Crystals More evaporation. producing sugar crystals suspended in syrup Final syrup Washed then sliced to produced from become... Re-processed to centrifugal produce more sugar machines after 3 Cossettes Thick juice crystals which are crystalization melted with thin juice stages and added to the Evaporated to concentrate, producing Soaked in hot water, Beet molasses producing ... Juice Thin juice 1100 Sugar Punfied by lime and CO₂ 19134 CC

Ð

BY

 (\mathfrak{I})

SA

Corn, maize – milling, two step enzyme hydrolysis of starch (liquefaction- thermostable α-amylase + saccharification - glucoamylase) (in past acid hydrolysis)

topinambur

triticale

Cassava – peeling, cutting, two step enzyme hydrolysis of starch (liquefaction + saccharification)

Manihot esculenta Cassava, manioc, tapioca

Jerusalem artichokes – washing, cutting, water extraction of inulin, inulinase treatment or acid hydrolysis

Malt whisky manufacturing

http://www.dcs.ed.ac.uk/home/jhb/whisky/glossary.html

Other sources of carbon

- Whey
- Sulfite extracts
- Cellulose

- Lignocellulose waste hydrolysate
- Waste paper and bark
- Distilleries slops
- Wastes from fruit processing

Feedstock of second generation (non-food biomass) and its pre-treatment

Agricultural waste – wheat and rice straw, corn stover,

bagasse...

Municipal waste, paper

Fast growing trees (poplar, willow), *Miscanthus*, sawdust, twigs...

Feedstock availability and price

Wheat straw

-multiple uses - animal bedding, fertilizer, construction material, production of biogas, pellets for burning, shoes, packiging material

- Collection area (transport cost)

Wood

- Construction material, wood chips and pelets...
- High price

MSW (municipal waste)

- Necessary sorting
- Can have negative cost (tax on landfills)

Different lignocellulose materials

Wheat straw

36 % cellulose 16 % hemicellulose 27% lignin 6% ash

Miscanthus

39 % cellulose 15 % hemicellulose 26 % lignin 3 % ash

Poplar wood

31 % cellulose 15 % hemicellulose 35 % lignin 2 % ash

Dry poppyheads

15% cellulose12% hemicellulose30% extractives20% lignin10% ash

Usual current pre-treatment approach

- 1. Mechanical cutting, milling
- 2. Physico-chemical acid/alkaline hydrolysis, ammonium expansion (AFEX), steam explosion...

Enzyme decomposition - endocellulase,
 Exocellulase (cellohydrobiolase), cellobiase (beta-glukanase)
 Novozymes, Genencor – enzymes obtained from fungi
 especially
 Trichoderma reesei

Types of physico-chemical pretreatment

- 1. Dilute acid increased accesibility of cellulose X low lignin removal, inhibitors
- **2. Dilute alkali** decreased crystalinity of cellulose, lignin removal, no inhibitors X solubilization of hemi cellulose
- 3. Steam explosion cellulose digestibility, lignin redistribution X inhibitors, incomplete decomposition, high energy
- 4. Organosolv biomass fractionalization, less energy X explosion hazard, environemtal concern, loss of hemi cellulose
- 5. AFEX (ammonia fiber explosion) lignin removal, decreased crystalinity of cellulose, low inhibitors X environmental concern, price

Paulova et al. (2013) Production of 2nd Generation of Liquid Biofuels http://dx.doi.org/10.5772/53492

Process selection

Benzoic acid

-H

Different hydrolysates

Selection criteria:

- Feedstock
- Minimization of inhibitors formation
- Economic demands (chemicals, heat, equipment..)
- Environmental concerns (waste..)

Acetic acid

RSM optimization of alkali pretreatment of wheat straw

Optimal conditions : temperature 80 °C, 40 min, dosing 0.18 kg NaOH + 0.06 kg Ca(OH)₂ per 1 kg of straw

Main bottlenecks of lignocellulose utilization

- •High hydromodule low concentration of sugars (~4%)
- •Mixed substrate hexoses and pentoses
- Inhibitors formation (mainly 2-furaldehyde, hydroxymethyl-2-furaldehyde) – problems in fermentation and enzyme decomposition
- Demanding pre-treatment
- •High cost and high dosing of cellulolytic enzymes
- Low concentration of product

Combined approaches toward substrate pretreatment and fermentation

SHF (separate hydrolysis and fermentation) – optimal conditions for both hydrolysis and fermentation X time consuming

SSF (simultaneous saccharification and fermentation) – simultaneous application of enzymes and microorganisms X compromised conditions for both processes

CBP (consolidated bio-processing) - use of microorganism or microbial consortium able to decompose cellulose and produce required metabolites

Fed-batch delayed SSF (dSSF)

FED-BATCH PROCESS – increase of sugar concentration by feeding new (concentrated) substrate

yield from cellulose 0.37 g/g, ethanol concentration 18 % v/v Paulova et al., Fuel 122,

(2014)

y CC I O BY SA

Comparison of efficiency of selected CBP processes

Category I – cellulase producers, category II – ethanol producers

microorganism	feedstock	Ethanol (g/l)	Yield (%)	Productivity (g/l/h)
Category I				
Clostridium thermocellum	cellulose (unspecified)	23.0	40	0.02
Fusarium oxysporum	Cellulose (unspecified)	14.5	53	0.1
Category II				
Engineered S.cerevisiae	Acid pre- treated straw	26	63	0.27
consortium				
C.thermocellum Thermoanaerob acterium saccharolyticu m	Avicel	38	90	0.3
S.cerevisiae	Corn, sugar beet	100-140	95-98	2.8-4.0 (cc) (i

Feedstock of third generation - algae

Fresh water micro algae – *Chlorella* (starch accumulation in cells – up to 60% of dried weight)

Brányiková et al., 2009

Sea weeds - macro algae Ulva, Gracillaria... (starch accumulation in cells)

Pretreatment

Harvesting (sedimentation, centrifugation..), drying, desintegration of cells, enzyme hydrolysis (possible use of both starch and cellulos wall)

THE ALGAE PROCESS

https://www.cosia.ca/the-algae-project

Outdoor algae cultivation in convenient conditions

Biorefinery

A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery concept is analogous to today's petroleum refineries, which produce multiple fuels and products from petroleum. http://www.nrel.gov/biomass/biorefinery.html

NREL – National Renewable Energy Laboratory (USA)

Petroleum refinery

http://www.energybc.ca/profiles/oil.html

Biorefinery Concept

http://www.nrel.gov/biomass/biorefinery.html **()**

СС

BY

SA

Biofuel flow (whole plants)

http://www3.weforum.org/docs/WEF_FutureIndustrialBiorefineries_Repo

 \odot

SA

Nitrogen source

1) Basic resources ammonium salts nitrates urea amino acids 2) Natural sources - autolysates, peptones, veast extract, whey ...

Phosphorus sources

- Phosphates
- Complex resources

- Macro- and microelements
- Salts sulphates, chlorides or complex raw materials

Defoaming agents

Oils and fats, alcohols, sorbitan derivatives, polyethers, silicones ..

Influence of the viscosity and surface tension of the culture medium X toxicity to cells

Water

Hygienic requirements Technology requirements - salt content Water treatment - distillation, deionization

Sterilization

- Thermal
- Filtration (for substances sensitive to heat)
- UV irradiation (water, space)
- Chemical (Petri dishes ...)

Sterilization in situ X ex situ

- In situ –in bioreactor
- Flow sterilization (pasteurisation) of the culture medium
- CIP and SIP for a bioreactor

CIP –cleaning-in-place (also SIP – sterilization in place and WIP – washing in place)

- Closed piping system connected by tight valves with a production line
- Suitable for beverage industry, dairy, syrup production, oil ...
- Suitable where classic cleaning requires the whole line to be dismantled
- Contains dispensing pump, detergent source, ...

Cycle of CIP- example

- 1. 3x rinse with water (length 20s, interval 40s)
- 2. Add detergent to water, steam spraying to achieve the desired temperature
- 3. Circulation of heated washing solution (10-12min.)
- 4. 2x rinse with water (length 20s, interval 40s)
- 5. Rinse with acidic solution (pH 4.5-5, 3min.)
- 6. Draining of washing water, drying

Safe deposit of microbial strains

- Freezing with cryoprotectives
 10% glycerol, 5% DMSO
- 2. Lyophilization

12% saccharose, dried milk

3. Other ways

BATCH CULTIVATION

- TRANSIENT SYSTEM
- CONCENTRATIONS CHANGING IN TIME PERIOD

SPECIFIC GROWTH RATE

- GROWTH RATE proportional of concentration of biomass $\frac{dX}{dt} = \mu X \qquad \mu = \frac{1}{X} \frac{dX}{dt}$
- SPECIFIC GROWTH RATE growth rate related to one unit of biomass
- Amount of biomass originated from 1 g of biomass per one hour

• UNIT:
$$\left(\frac{g}{l.h}\right) \cdot \left(\frac{l}{g}\right) = (h^{-1})$$

• WHAT MEANS $\mu = 0.2 \, h^{-1}$?

CALCULATION OF µ FROM EXPERIMENTAL DATA

 $X = X_0 e^{\mu t}$ line equation:

$$\ln X = \ln X_0 + \mu \Box t$$

SEMILOGARITMIC PLOT SLOPE OF THE LINE - μ

CONVERSION OF SUBSTRATE TO PRODUCT, BIOMASS,....

$$Y_{X/S} = -\frac{dX}{dS}$$

$$Y_{P/S} = -\frac{dP}{dS}$$

UNIT: g.g⁻¹

PRODUCTIVITY

 AMOUNT OF PRODUCT PER TIME PERIOD PER VOLUME

$$p_{\max} = \frac{c_{\max} - c_0}{t_0 - t_k}$$

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture II

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Biotechnology in Food Industry

Introduction to the topic – common principles of microbial technologies II

Content

- Type of cultivation process
- Bioreactor equipment
- Product separation
- Summary of the bioprocess

Laboratory/Process Microbial Cultivation

In liquid medium

- composition of the medium
- Cultivation in shaken flasks

On a solid substrate

- Substrate composition
- Cultivation on agar plates

Cultivation in bioreactor

Type of cultivation (batch,fed-batch, continuous)

Monitoring process parameters

Solid substrate cultivation

- Water activity
- Particle size
- pH of the substrate
- Aeration and mixing
- Heat removal

Fig.3 Rice grains after 7 days cultivation of *M.purpureus* at 30 °C

DIFFERENCES SSC X SLC?

CULTIVATION ON SOLID SUBSTRATE	CULTIVATION WITH LIQUID MEDIUM
MEDIUM- SOLID	MEDIUM- LIQUID
LOW LAYER OF SUBSTRATE	HIGH DEPTH OF MEDIUM
CELLS GROW ON SUBSTRATE SURFACE	CELLS GROW IN MEDIUM
GRADIENT OF NUTRIENTS, HEAT	NUTRIENTS DISSOLVED HOMOGENOUSLY
TRANSPORT OF NUTRIENTS, HEAT AND OXYGEN LIMITED	TRANSPORT PROCESSES ARE NOT LIMITED
OXYGEN MAINLY IN GAS PHASE	OXYGEN DISSOLVED IN LIQUID
COOLING REALISED using gas phase	COOLING REALISED USING external cooling (cold water in double wall)
MONITORING AND CONTROL COMPLICATED	MONITORING AND CONTROL IS COMMONLY USED
PRODUCT CONCENTRATED	PRODUCT DISSOLVED IN LI

SOLID STATE BIOREACTORS (SSB)

- LOW WATER ACTIVITY
- NON-HOMOGENIC
- GRADIENT OF NUTRIENTS, pH, HEAT...
- CULTIVATION OF MOLDS
- DIFFERENT TYPE AND TECHNOLOGICAL LEVEL

SSB – TRAY BIOREACTOR

- SEVERAL TRAYS IN TEMPERATED CHAMBER
- PERFORATED BOTTOM
- LOW DEPTH OF SUBSTRATE
- AERATION
- NON-ASEPTIC
- MANUAL MIXING
- TEMPEH, KOJI

Laboratory propagation

Cultivation (fermentation) process

Bioreactor

- Preparation of the culture medium (broth)
- Preparation of the inoculum (microorganism)
- (sterilization)
- Fermentation (cultivation)
- Product acquisition (isolation and purification)

TYPES OF BIOREACTORS

FREE CELLS, IMMOBILIZED CELLS

STIRRED BIOREACTOR - PARTS

SA

Bioreactor equipment

Mixing

Mechanical

Pneumatic

Hydraulic

Mixing function - Homogenization of air content and dispersion

X shear force

Bioreactor equipment

Aeration

Aerating wreath, nozzle

Sometimes associated with mixing!

Probes

pH, temperature, O_2 ,

defoaming ...

STIRRED BIOREACTOR - STIRRER

- HOMOGENIZATION EFFECT TRANSFER OF NUTRIENTS, ENERGY, HEAT, OXYGEN, METABOLITES
- DISPERGATION EFFECT OXYGEN TRANSFER FROM GAS TO LIQUID

PNEUMATICALLY AGITATED BIOREACTORS

- AIR-OPERATED MIXING
- SHEAR STRESS SENSITIVE CELLS
- AEROBIC CULTIVATION
- LOW OXYGEN TRANSFER RATE

AIR-LIFT BIOREACTORS

- HIGH h/d
- CIRCULATING TUBE or
 FITTING increased dispergation, increased holding time

Types of microbial cultivation

- 1. Batch
- 2. Fed-batch
- 3. Continuous

Batch cultivation

Constant volume

Fed-batch cultivation

Reduction of substrate inhibition

GROWTH IN FED-BATCH

FED-BATCH IS USED FOR:

- INCREASED PRODUCTIVITY more substrate addition -prolonged cultivation time
- SUBSTRATE INHIBITION growth is inhibited by high concentration of substrate (ethanol, methanol..)
- CRABTREE EFFECT high concentration of glucose – ethanol production at aerobic condition
- HIGH CELL DENSITY CULTURES growth is supported by exponential substrate addition (SCP, recombinant proteins,....)
- VISCOSE MEDIA microbial prolymers (dextran, xanthan) – dilution of media (mixing, aeration)

FEEDING RÉGIME

- BASED ON EXPERIENCE
- ACCORDING TO MODEL (based on cultivation data) – continuous, discontinuous, constant, linear, exponential
- DIRECT REGULATION based on actual concentration of substrate
- FEEDBACK REGULATION based on on-line measured signal of parameter connected with cell metabolism (pH, O₂, CO₂)

Continuous cultivation

Dilution rate: D=F/V

D<μ (if not gradual flooding of microorganisms from the systém)

Constant volume, reduction of product inhibition

CONTINUOUS CULTIVATION

NUTRIENTS DEPLETION – GROWTH STOPPED

CONTINUOUS NUTRIENTS ADDITION – CONSTANT GROWTH AND PRODUCTION, HOMOGENOUS CULTURE, STEADY STATE

CONTINUOUS CULTIVATION

DILUTION RATE:

$$D = \frac{F}{V}$$

- UNIT: h⁻¹
- STEADY STATE concentration of biomass, metabolites and nutrients in bioreactor is constant and independent on time (dependent only on cultivation condition)
- CHEMOSTAT constant dilution rate, grow is limited by availability of one nutrient (source of carbon)

CHEMOSTAT

- F=const, V= consts, $D = \frac{F}{V}$, D=const
- GROWTH RATE CONTROLLED BY NUTRIENT AVAILABILITY

$$\mu = \mu_{\max} \frac{S}{K_s + S}$$

• STEADY STATE:

COCENTRATION OF NUTRIENTS = const SPECIFIC GROWTH RATE = const and equal to DILUTION RATE μ =D in the interval 0<D< μ_{max}

STEADY STATE

- F=const, V= consts, $D = \frac{F}{V}$, D=const
- GROWTH RATE CONTROLLED BY NUTRIENT AVAILABILITY

$$\mu = \mu_{\max} \frac{S}{K_s + S}$$

- STEADY STATE:
 - 1. CONCENTRATION OF NUTRIENTS = const
 - 2. SPECIFIC GROWTH RATE = const and equal to DILUTION RATE μ =D in the interval 0<D< μ_{max}
 - 3. concentration of biomass, product, metabolites = const

STEADY STATE

- IN A STEADY STATE ALL PARAMETERS ARE NOT DEPENDENT ON TIME BUT ONLY ON CULTIVATION CONDITION
- PHYSIOLOGICAL STUDIES
- OPTIMIZATION EXPERIMENTS relation between concentration of nutrients, cell growth, production, yield and productivity

Separation from microorganisms from cultivation medium

- Centrifuging
- Filtration
- Sedimentation
- Flotation

Isolation of metabolites from fermentation medium

- Distillation
- Precipitation and crystalization
- Extraction by solvents
- Adsorbtion and elution
- Membrane separation

Basic process scheme

- Feedstock and its adjustment, supplementation
- Microorganism and its requirements
- Metabolism aerobic/anaerobic, production of metabolites
- Process arrangement batch/ fed-batch/ continuous
- What is product? Biomass or metabolite
- Product separation, purification and final adjustment

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture III

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Baker's yeast production and production of other types of biomass

- 1. Microorganism
- 2. Metabolism
- 3. Molasses glow
- 4. Technological stages of yeast production
- 5. Active dried yeast
- 6. Evaluation of quality indicators of bakery yeast

Saccharomyces cerevisiae

Life cycle of *S.cerevisiae*

Metabolism of saccharides

Yeast *S.cerevisiae* – facultatively anaerobic

Anaerobic (fermentation)

Glycolysis leading to ethanol formation

HMP pathway

Biomass yield 10%

Gain of Energy – 2 mol ATP per 1mol glucose

Substrate phosporylation

Aerobic (respiration) Glycolysis + TCA cycle HMP pathway

Biomass yield 50%

Gain of Energy – 38 mol ATP per 1mol glucose

Oxidative phosporylation

- Inhibition of respiration by glucose -
- Pasteur effect
- Oxygen limitation X hyperoxia
- Effect of ethanol
- Optimal fed-batch cultivation
- Feed continuous or discontinuous

Technological steps in bakery yeast production

- 1. Laboratory propagation
- 2. Preparation of cultivation medium
- 3. Process propagation of yeast
- 4. Pre-fermentation
- 5. Production of generation yeast
- 6. Production of expedition yeast

Laboratory propagation

Goal- 0.5-1kg yeast

- Pure culture
- Propagation ratio 1:5
- Anaerobic cultivation
- Rich cultivation medium
- Cultivation time 24-48h
- cultivation in flasks

Preparation of molasses medium

- Clarification acid or alkali
- Centrifugation –sludge separators
- Pasteration, sterilization
- Supplementation NH₄OH, (NH₄)₂SO₄, K₂HPO₄, MgSO₄, biotin...
- Acidification
- Adjustment of concentration

Process propagation of yeast

- Goal increase of yeast amount
- 2-4 steps
- In bioreactors
- aeration
- Fermentation control
- Content of proteins in cells 5 fermentation ability, low shelf-life

Pre-fermentation

Goal –scale up, change of cultivation conditions

- Molasses medium
- Fed-batch cultivation
- Aeration 0.1 VVM (air Volume per bioreactor Volume per Minute)
- Ethanol max. 4.5%

Generation yeast I

Goal- to prepare enough active yeast for the last production step

- 2 generation
- Fed-batch cultivation
- Decrease of N and P compounds→ decrease of protein amount in cells
- Aeration up to 1 VVM
- Lower cultivation temperature

Generation yeast II

- Centrifugation
- Washing acid bath (0.1-0.4% H₂SO₄) –yeast decolorization, activity increase
- Cultivation time 8-15h

Expedition yeast

- Fed-batch
- Concentration of ethanol max. 0.5%
- Low cultivation temperature
- Acid bath before cultivation
- Cells cca 42% proteins, leavening in the dough 50-90 min, shelf life up to 250h at t=30°C

Yeast separation from the medium

Centrifugation – 4000-6000 rpm Washing

Yeast milk ↓ Cooling and filtr

Cooling and filtration

 \checkmark

Compressed yeast – D₂₇

Adjustment and expedition of compressed yeast

Formulation and Packaging (mixing with water and Lecithin)

Production of dried yeast

- Increase of saccharides concentration (trehalose, glycogen) and lipids in cells
- Additivation (ascorbic acid, mono- and diglycerides)
- Granulation
- Drying hot air and vacuum driers
- Packaging

Evaluation of bakery yeast

Senzorical evaluation

Smell

Colour

Appearance

Consistence

Taste

deliquescence

Chemical analysis Biochemical tests

- Leavening
- Shelf life

Microbiological

test

Wild yeast 15%, dead to 0.5%, max. 5%of budding cells

Contaminating microorganisms

Source of contamination – molasses, water, air Aerofilic yeast – *Candida*..

Fungi – Aspergillus, Penicillium..

Bacteria – from molasses (*Clostridium*), water (*Pseudomonas*) and air (acetic acid bacteria)

Active dry yeast

Biomass for animal feeding

- 1. Propagation of microorganisms
- 2. Cultivation
- 3. Separation of cells from media
- 4. Thermolysis
- 5. Evaporation of water and drying

Survey of used microorganisms

Bacteria	Carbon source
Methylophilus	methanol
Methylococcus	methane
yeast	
Candida lipolytica	n-alcanes
Candida utilis	Sulphite extracts
Kluyveromyces fragilis	whey
Saccharomyces	mollasses
cerevisiae	

2

SA

BY

Fungi	
Chaetomium	Lignocellulose hydrolysates
Cephalosporium	starch
Rhizopus oryzae	starch
Algae	
Scenedesmus	CO ₂ , light
Spirulina	CO ₂ , light

ΒY

SA

Production of microbial biomass from from sulphite extracts

Candida utilis

Sulphite extracts

- composition depends on the type of wood and cooking conditions
- Max. 5% carbohydrates glucose, mannose, xylose, galactose, arabinose
- Lactonic acids, lignosulfonic acid, methanol, formic acidCa²⁺, Mg²⁺ salts
- **SO**₂

Treatment of sulphite extracts

- 1. Decrease in SO₂ (max. conc. 400mg/l) \downarrow
- Steam spraying, thickening, aeration, precipitation of sulphates
- 2. Neutralization pH 5.2 (precipitation of calcium sulphate)
- 3. Cooling
- 4. Nutrient supplementation N, P, K salts

Propagation of yeast

- Using sulphite extract
- gradual adaptation to SO₂,
- Batch
- polyauxia

Cultivation

- Continuous, dilution rate 0,25 l/l/h
- Regulation pH
- Defoaming
- Aeration
- Yeast should not form pseudomycelium

Separation and washing

- Continuous centrifugation
- 3 degrees
- Countercurrent
- Thermolysis
- at t = 70°C
- thickening
- Drying (93% w / w dry matter)

Technologické schéma výroby buničiny a krmného droždí Technological scheme of pulp and food yeast production

Biocel Paskov

http://www.biocel.cz/c_html/index.htm

Algae

- Plant kingdom, lower plants
- Photoautotrophic organisms, aquatic environment
- Body-insole uni- or multicellular micro- and macro-algae
- Reproduction of unicellular algae by dividing
- Creation of sexual spores
- Trivial classification by content of photosynthetic dyes – green, brown, red, green-blue

A after Mervin Palmer (1962) B © National Institute for Environmental Studies, see http://www.nies.go.jp/biology/mcc/home.htm

Micractinium

Microspora

Scenedesmus

Actinastrum

A. After Entwisle et al. (1997) B. © Y. Tsukii, see http://protist.i.hosei.ac.jp/Protist_menuE.html

Algae culture- algaculture

- Tanks, fermenters
- Batch or continuous cultivation
- Access to light
- Gentle mixing
- CO₂ content
- risk of contamination

Chlorella cultivation

- Round pond with rotating shoulder
- Raceway pond, bubbling with CO₂ and stirring with a paddle stirrer
- thin layer culture mixed by pumping
- Cultivation season (outdoor) here 150 days, in Africa - 300-320 days

Open-pond design

Raceway pond

Flat-plate photobioreactors

Photobioreactors

- Bubble columns
- Air-lift bioreactors
- Adjustable light source

9 SA

- Delivery of CO₂
- stirring

Photobioreactor

Harvest and processing algae

- Harvest sedimentation, filtration, centrifugation
- Cell disintegration crushing
- Drying heat, solar radiation
- The yield the effectiveness of photosynthesis max. 60g/m²/day

Material and energy outputs for algae cultivation

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture IV Petra Patáková

petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work. If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Mushroom cultivation - macromycetes

Content

- Incorporation into the system and history of mycology
- Morphological structure and reproduction
- Ecological groups
- mushrooms (saprophytic, symbiotic,
- parasitic)
- Cultivation of edible mushrooms (Agaricus, Pleurotus)

History of mycology

- Supernatural explanations of hub growth
- An effort to assign mushrooms to plants
- The popularity of mushrooms ancient times, modern times
- Geographic extension of mushroom picking
- The cult of hallucinogenic mushroom
- Fossil fungi- paleozoikum

Main differences of fungi

	Fungi	Plants	Animals
plastides	-	+	-
Nutrition	heterotrophic	auxotrophic	heterotrophic
Reserve saccharide	glycogen	starch	glycogen
movement	- (+)	-	+
Cell wall	Chitin, manane, cellulosa	cellulosa	chitin

() SA

Reproduction

Both asexual and sexual– teleomorphs Only asexual– anamorphs ↓ auxiliary subdivision DEUTEROMYCOTINA

(up to 30% fungi)

DEUTEROMYCOTINA

1. Auxiliary class BLASTOMYCETES

Candida, Rhodotorula, Cryptococcus

2. Auxiliary class HYPHOMYCETES

Aspergillus, Penicillium, Oidium, Trichoderma, Alternaria, Botrytis

3. Auxiliary class COELOMYCETES

Phoma

4. Auxiliary class AGONOMYCETES Sclerotium

Taxonomy of fungi

- Kingdom– Fungi
- **Division** Eumycota
- Subdivision Zygomycotina
- Class Zygomycetes
- Order Mucorales (Rhizopus, Mucor..)
- Family, Genus, species

Subdivision Ascomycotina

Class Hemiascomycetes Order Saccharomycetales, Schizosaccharomycetales <u>Class Ascomycetes</u>

Order Pezizales (*Tuber, Morchella, Verpa*..)

Eurotiales (Aspergillus, Penicillium...)

Verpa bohemica

Subdivision Basidiomycotina

Class

Homobasidiomycetes Order Cantharellales Polyporales, Boletales, Agaricales, Lycoperdales, Russulales

Boletus edulis

Morphology of filamentous fungi

Thalus (body) is formed by hyphae

uni-cellular (without septa) multicellular (with septa)

mycelium

Reproduction

Vegetative (asexual)

- **Nucleus division mitosis**
- Creation of asexual spores conidia on vegetative hyphae or in fructification organs
- **Parasexual reproduction**

Sexual

Mitosis, meiosis, mitosis Conjugation of two cells Homothalic and heterothalic fungi Formation of sexual spores

Conidiophor – Penicillium chrysogenum

Ascospores in ascus – Byssochlamys nivea

Reproduction

Ascomycetes

Creation of asexual spores- abundant Differentiated sexual organs (anteridium (male), askogonium(female)) Bazidiomycetes Asexual spores-seldom Sexual organs are not differentiated Binuclear mycelium Merging nuclei in basidia

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Fruiting body of mushroom(sporocarp, carpophor)

- It serves predominantly for the formation of sexual spores
- It consists of intertwined hyphae generative, ligational, skeletal
- The most important part of fruiting body is the hymenophor, it carries a hymenium – there are spores (various shapes)
- 1 fruiting body –millions of spores

Development of fruiting body

- It depends on: the development stage of the fungus, the composition of the substrate, temperature, light, air flow, surrounding communities, humidity ...
- I.) initiation germ creation primordia
- II.) Differentiation formation of fruiting body
- Growth of hyphae apical in mycelium X omnidirectional growthin fruiting bodies

Hymenium(during fruiting body development)

Angiocarpic developmentGymnocarpicin velumdevelopment

open

Boletales, toadstools–in youth in – hemiangiocarpic development

Release and germination of spores

- Release: passive and active
- Germination: After a rest period dormancy (constitutional or exogenous)
- Swelling
- Fat digestion
- Synthesis of the cell wall
- Burst of spore in thin spots germination pores

Saprophytic mushrooms

Obtaining nutrients by enzymatic decomposition of organic matter In the soil, in the upper humus layer In wood

Symbiotic mushrooms

The most important - symbiosis with plants - mycorrhiza

The mushroom needs carbohydrates Plants need water and minerals Ectomycorrhiza - the surface of the roots is covered with hyphae - the Hartig net Endomycorrhiza - hyphae penetrate host cells

On the ground

Root section

Types of Mushrooms

Oyster Mushroom

Straw Mushroom

Reishi Mushroom

Enokitake Mushroom

Wood Ear Mushroom

Benefits of growing edible mushrooms

- Use of waste products
- Cellulose decomposition
- Fruiting body- easily separable, generally acceptable
- Cultivation simple
- Low acquisition costs
- Suitable technology for developing countries

Agaricus bisporus white button mushroom

Preparation of the mushroom substrate

Main Components:

- horse manure, straw, poultry litter, pig slurry, gypsum....
- Ratio C: N 30-35: 1 at the beginning of fermentation
- Water addition (70-75%) and gypsum (pH adjustment)

Fermentation of the mushroom substrate

- 1. Mixing and humidification fermentation pile
- Phase I fermentation decomposition of nitrogenous substances - bacteria - t = 20-30°C
- 3. Phase II of fermentation thermophilic bacteria, fungi Humicola sp., Chemical reactions formation of lignohumus complex, ventilation

Temp. = 40-60°C

Substrate - 65-68%, ash 20-35% dry matter, 0.4% NH4⁺, 1.6-2.1% org.N

Covering soil components: Peat, lime milk, bentonite

Mushroom seedlings:

Grain seed, inoculation - 0.6% seed / substrate

Cultivation

- Propagation of seedlings in substrate
- The substrate is covered with cover earth
- Creation of primordia, then fruiting bodies
- Harvest waves

Run of Agaricus cultivation

Seeded substrate	1 day
Covering with bentonite	2 weeks
Raking (aeration)	3 weeks
Ventilation	25.day
First harvest wave	5-6 weeks
Second harvest wave	7 weeks
Third harvest wave	9 weeks
Waste disposal	61.day
disinfection	62.day

<u>Growing systems:</u> shelving, box, bag ...

End of culture:

Warm up the entire area at 75°C for 12h Chemical treatment - formaldehyde

Excavated substrate - fertilizer, cover earth

Shelf (Racks)

Bag system

Diseases and pests of mushroom culture

Bacterioses

Viroses

Fungal diseases

Competitive mushrooms

Nematods

Flies

Mites

Pleurotus ostreatus Oyster mushroom

In nature – oyster mushroom on wood

On logs or stumps

Intensive cultivation of Pleurotus

Substrate preparation

Straw, corn spindles ..

- Moistening and heat treatment (sterilization)
- Substrate seeding
- Mixing with grained seed (2-5%)
- Proliferation of mycelium

14 days, 25-27°C, without aeration (anaerobic) X intensive cooling

Oyster mushroom

Initiation of fruiting bodies formation 20-22°C, ventilation with humid air

Harvest in waves Spore release - Required respirator

Exfoliated substrate - Feeding for pigs

Diseases and pests - molds, flies

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture IX

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Fermented foods from soya and rice

Soya

- High protein content (45% in dry matter.), fats (20%.), saccharides (35%.) and fiber
- Consumption benefitial effects on health
- Isoflavones antioxidants, plant hormons
- X antinutritional factors inhibitors of proteases, antivitamins, non-digestible oligosaccharides
- GM soya?

http://bioinfo03.ibi.unicamp.br/soja/

HO R2 R1 O R3

daidzein R1=H, R2=H, R3=OH

Isoflavony v sóje

genistein R1=OH, R2=H, R3=OH

Fermentation of cooked soya

- Digestion of proteins to amino acids and peptides \rightarrow atractive smell and taste
- Digestion of oligosaccharides (stachyose, raffinose and melibiose)
- Increase of amount of free isoflavones
- Production of riboflavin, nicotinic acid, nicotinamide and vitamin B₆
- Higher shelf-life

Fermented products:

- Spicy and flavouring compounds
 soy sauce, soy paste, soy nuggets, sufu
- 2. Soy foods tempeh, natto, soy jogurt

Koji ("bloom of mould")

- Source of proteolytic, peptidolytic, amylolytic, (hemi)celulolytic enzymes
- Use of nnon-toxinogenic fungi Aspergillus oryzae, Aspergillus sojae...
- SSC (dishes with perforated bottoms, periodic mixing)
- Inocultaion with spores or seed cultures
- Different types of koji –based on substrate (cooked) and intended use

Used microorganisms

- 1) Fungi Actinomucor, Mucor, Rhizopus, Aspergillus
- 2) Lactic acid bacteriy

3) Halofilic yeast

Mucor

Rhizopus

Traditional way

Wheat is imported from overseas countries.

Soybeans are imported from overseas countries.

For more informations on the ingredients and the fermentation process, please click here.

The soybeans are steamed to cook.

Kikkoman's Aspergillus (mold) plays a vital role in determining the flavour of Kikkoman Soy Sauce. Mold is added to the wheat and soybeans. The resulting mixture is then cultured for three days to form a dry mash called Koji.

For more informations on the production of Koji, Mixing and aging, please click <u>here.</u>

Salt is dissolved in water.

For more informations on the bottling, inspection and shipment, please click here.

Samples of the refined soy sauce are sent to the laboratory, where they are carefully analyed to ensure of it's finest quality. Koji is combined with a salt water solution to form moromi. The moromi is then fermented in tanks for about half a year.

The Raw soy sauce is then refined and pasteurized.

For more informations on the pressing nad rrefining, please click <u>here.</u>

Moromi is poured onto cloths, folded and pressed. The raw soy sauce is squeezed out. Soy sauce pressed cake and oil are the by-products.

Differences between soy sauces

fermented soy sauce

 enzyme hydrolysis and fermentation under ambient temperature •Flavour – mild, pleasant •Essential amino acids, "shoyu" polysaccharides biogenic amines – "syndrom of China restaurant "?

Non-fermented soy sauce

- acid hydrolysis under high temperature
- flavour rough, unpleasant
- •Other seasonings, conservants
- high content of chlorpropanoles (3-MCPD)
 (EC limit 0,02mg/kg)

Indicator of falsification -tryptofan, levulic acid

http://cs.wikipedia.org/wiki/Tempeh

http://www.tempeh.info/

http://www.mindbodygreen.com/0-5563/3-Secret-Healing-Benefits-of-Miso.html

http://www.asianfoodgrocer.co m/product/honzukt miso-paste-35-2oz?green=A8F0FE

http://www.pref.ibaraki.jp/bukyoku/seikan/koku ko/e-ibaraki-report/0603natto.html

http://nakazora.wordpress.com/2010/0

7/10/ferment-ii-natto/

Influence of natto on health

- "natto kinase" (serine protease, subtilisin) reduces thrombs by fibrinolysis and by inhibition of plazminogen activator; anti Alzheimer disease
 vitamin K₂ (menachinon) –anti osteoporose
 antioxidant PQQ (pyrochinolin chinon) – antioxidant effect
- •probiotic effect of *B.subtilis* (up to 10⁸ cells (spores)/g, strain R0179- GRAS January 2012; FOSHU status in Japan)
- isoflavones from soya
- •Other effects-cholesterol reduction, anti obesity, improvement of digestion

http://www.magister.sk/produkt/d etail/produkty-od-a-po-z/nattonkcp-

http://www.jamiesonvitamins.sk/t ag/starostlivost-o-klby-aartritida/

http://kyotofoodie.com/hanamizakesake-and-sakura-blossoms/

- Usual ethanol conc. 15%
- Addition of ethanol

 Different types of saké –differences in polishing rice, filtration and addition of ethanol

Saké

Saké serving– cold, hot, at room temp.

Mikrobial production of glycerol

Glycerol (1,2,3- propantriol)

Uses - cosmetics, painting, food, pharmacy, leather and textile industry

Chemical production - fat hydrolysis

Microbial production - by yeast:

- Sulphite way NaHSO₃
- Alkaline way

Acetaldehyde is blocked by sulphite

Sulphite way

1. Blocking acetaldehyde by sulphite

Hexose + SO₂ \rightarrow acetaldehyde-sulphite + CO₂ + H₂O + **glycerol**

- 2. Adaptation of wine yeast *S. cerevisiae* to sulphite
- 3. Anaerobic fermentation 30h, temperature 30-32°C

4.Saccharide concentration– 15%, yield 51%

Alkaline way

- $2\text{hexose} \rightarrow 2\text{glycerol} + \text{ethanol} + \text{acetate} + 2\text{CO}_2 + 2\text{ H}_2\text{O}$
- Saccharide concentration up to 17%
- Addition of sodium, magnesium or calcium carbonate– pH > 7
- Process 4-5 days

Production by osmotolerant yeast

- Zygosaccharomyces acidifaciens
- Aerobic process, formation of ethanol and acids
- High concentration of saccharides
- Up to 20% glycerol

Production of glycerol by osmotolerant algae

• Dunaliella

Glycerol production - response to stress caused by increased NaCl concentration – however mainly intracellular glycerol is produced

Glycerol isolation

- Yeast and sludge centrifugation
- Distillation of ethanol
- Cleaning
- Concentration by evaporation
- Vacuum distillation of glycerol X polymerization

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture V

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work. If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Ethanol production

Content of the presentation

Global politics regarding biofuels production Feedstock and its pre-treatment Processing of lignocelulosic materials Ethanol fermentation distillation and final adjustment

Why to produce biofuels?

- to reduce oil dependance
- to alternate part of fuel consumed in transport with renewable one
- to reduce emissions
- to support sustainable agriculture
- to create new jobs

Types of biofuel

- Biochemical conversion of biomass ethanol, butanol, biogas, biohydrogen
- Thermochemical conversion BTL (biomass to liquid), gassification (syngas), methanol, hydrocarbons, biohydrogen
- Oleochemical conversion FAME (biodiesel), HVO/HEFA

Definitions

Biofuels of 1st generation - from food crops (e.g. corn, sugar beet, sugar cane)
Biofuels of 2nd generation - from non-food crops or waste mostly lignocellulosic biomass
Biofuels of 3rd generation - from algae biomass

Advanced biofuels:

- produced from lignocellulosic feedstocks
- having low CO₂ emission or high GHG reduction
- reaching zero or low ILUC impact

ILUC – indirect land use change

FOOD OR FUEL?

Nearly a billion people will go hungry tonight, yet this year the U.S. will turn nearly 5 billion bushels of corn into ethanol. That's enough food to feed 412 million people for an entire year.

DOING THE MATH ...

5 billion bushels / 8 bushels of corn (anough calories to fead a person for a year) = sufficient calories to support 625 million people, minus one-third to account for distiller's grain (DDG) = 412 million

8 bushels of corn (feeds a person for a year) X 2.7 gallons of ethanol per bushel = 21.6 gallons of ethanol per bushel

SOURCES

450 pounds of com supplies enough calories for one person for a year (http://www.foreignaffairs.com/articles/6260%c-ford-runge-and-benjamin-senaues/how-biofuels-could-starve-the-poor)

About 5 billion bushels of U.S. corn production is slated for ethanol production (http://www.usda.gov/oce/commodity/wasde/latest.pdf)

One bushel of corn produces 2.7 gallons of ethanol (Purdue Extension, "How Fuel Ethanol is Made From Corn," http://www.extension.purdue.edu/extmedia/ID/ID-328.pdf)

O SA

Legislation

In EU

-directives 2003/30/EC and **RED (Renewable Energy Directive) 2009/28/EC** - compulsory <u>blending of gasoline with min. 4.1% v/v of ethanol</u> and diesel with 6% v/v with biodiesel

-strategic goal 20-20-20 (20% reduction in greenhouse gas emissions, 20% reduction in primary energy consumption, 20% of total energy from renewable sources in comparison with year 1990 by the year 2020)
 -April 28, 2015 – new iLUC directive

In U.S.A.

Energy Independent and Security Act of 2007 (EISA)
-RFS – renewable fuel standard – allows to blend gasoline with up to 10% v/v ethanol or 16 % v/v of 1-butanol
-strategic goal - by 2022 to use 136 mil. L of renewable fuels in transport

EU transport fuel consumption

• 2012 - bioethanol 28% market, biodiesel 72% market

Global Biofuel Production

Э SA

BY

Asian countries Motivation – reduction of dependance on oil, reduction of GHG

Country	Current Feedstock		Ethanol (millions of liters)		Biodiesel (millions of liters)	
	Ethanol	Biodiesel	2008	2012	2008	2012
China	Corn, wheat, cassava	Waste vegetable oil	2,002	2,433	355	568
India	Molasses	Jatropha, pongamia	2,150	2,171	317	300
Indonesia	Molasses, cassava	Palm oil	212	300	753	1,300
Malaysia	None	Palm oil	70	N/A	443	178
Philippines	Sugarcane	Coconut oil	105	245	211	393
Thailand	Molasses, cassava	Palm oil, waste cooking oil	408	1,120	48	860
Vietnam	Molasses, cassava	Animal fat	164	N/A	0	N/A
TOTAL			5,111	6,269	1,772	3,599

Feedstock of first generation

a) saccharose containing

molasses (waste stream from sugar industry), sugar beet, sugar cane

b) **starch containing** corn, maize, potatoes, cassava

c) Other – jerusalem artichokes (inulin)

Feedstock pre-treatment

Molasses – clarification, sludge separation, acidification, addition of necessary nutrients (ammonium and phosporous salts...), (sterilization)

Sugar beet, sugar cane – washing, cutting, water extraction →juice production (clarification, concentration, addition of nutrients)

Corn, maize – milling, two step enzyme hydrolysis of starch (liquefaction + saccharification) (in past acid hydrolysis) Cassava – peeling, cutting, two step enzyme hydrolysis of starch (liquefaction + saccharification) Jerusalem artichokes – washing, cutting, water extraction of inulin, inulinase treatment or acid hydrolysis

Feedstock of second generation (non-food biomass) and its pre-treatment

Agricultural waste – wheat and rice straw, corn stover, bagasse... Municipal waste, paper Fast growing trees (poplar, willow), sawdust, twigs...

Pre-treatment

- 1. Mechanical cutting, milling
- Physico-chemical acid/alkaline hydrolysis, ammonium expansion (AFEX), steam explosion...
- 3. Enzyme decomposition

http://energyfromwasteandwood.we ebly.com/generations-ofbiofuels.html

Feedstock of third generation - algae

Fresh water micro algae – *Chlorella* (starch accumulation in cells – up to 60% of dried weight)

Brányiková et al., 2009

Sea weeds – macro algae *Ulva, Gracillaria*... (starch accumulation in cells)

http://www.energyrant.com/algae-biodiesel-the-real-green-fuel/

Pretreatment

Harvesting (sedimentation, centrifugation..), drying, desintegration of cells, enzyme hydrolysis (possible use of both starch and cellulose in cell wall)

First generation ethanol - bioethanol

In EU – 4,6 bilion litres of sugar beet and corn ethanol in 2010 In USA – 45 bilion litres of corn starch ethanol in 2010

Ethanol fermentation by Saccharomyces cerevisiae $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$

Theoretical yield: 100% glucose \rightarrow 51.14% EtOH + 48.6% CO₂

Reality – 6% of by-products + yeast maintenance

glycerol, higher alcohols, aldehydes, acetoin, organic acids and their esters (generated mainly in glycolysis and from present amino acids; depends on used feedstock and nitrogen source)

http://www.vscht.cz/main/soucasti/fakul ty/fpbt/ostatni/miniatlas/images/kvasink

By-products of ethanol fermentation I

- Glycerol at the start of fermentation in the absence of acetaldehyde (in glycolysis)
- Higher alcohols a part of the so-called fusel amylacohols, isobutyl alcohol (deamination of amino acids)
- Aldehydes fusel- Isovaleraldehyde (from Leucine), Acetaldehyde (Glycolysis)
- Acetoin, 2,3-butanediol (from glycolysis)

By-products of ethanol fermentation II

- Organic acids acetic acid, succinic acid ... (both in glycolysis and otherwise)
- Esters of organic acids
- Methanol (from pectin and pulp)
- Hydrogen cyanide and benzaldehyde (from fruit stones)

Compounds produced by the activity of contaminating micro-organisms

Formation of higher alcohols from amino acids

gencibiosa

benzaldehydkyanhydrin

Formation of benzaldehyde and hydrogen cyanide

Formation of methanol

Protopectin – complex of pectin with cellulose, arabanes and galactanes

↓ protopectinase

Pectin

Methylester of poly-D-galacturonic acid

↓pekcinesterase, polygalacturonidase

CH₃OH + monogalacturonic acids

Ethanol fermentation

 Medium preparation – feedstock pre-treatment, (nutrients addition, sterilization) Nitrogen source – NH₄⁺ →increase of glycerol production

- amino acids →increase of fusel alcohols and aldehydes

-nitrogen limitation – low fermentation rate

- Yeast propagation high inoculum concentration, usually aerobic process – high growth rate (in some distilleries – use of dried yeasts without propagation or yeast recirculation)
- Fermentation temp. 30°C, pH 4.5-5, 16-48 h (depends on the process arrangement), 10-14 % v/v final ethanol concentration, yield 90-95 % of max. theoretical yield
- 4. Fermentation control microbiological, analytical (saccharide and ethanol concentrations)

Process arrangement – ethanol fermentation

- 1. Batch only in small distilleries for alcohol beverages
- Fed-batch traditional, proven solution with or without yeast recirculation
- **3. Continuous and semi-continuous processes** nowadays preferred solution, usually battery of bioreactors working up to 21 days

Pros

- •no inoculum preparation
- reduction of operation times necessary for cleaning and sterilization

cons

- risk of contamination*
- lower yield and final ethanol concentration

* Only 16% of fuel ethanol in USA is currently produced in continuous systems due to contamination problems.

Fermentation contaminants

- Lactic acid bacteria group of different bacteria, the most dangerous Lactobacillus fermentans – living on distilleries equipment, forming biofilm
- 2. Anaerobic bacteria (*Clostridium* sp.)
- 3. Mycotoxins from rotten feedstock

Lactobacillus sp.

http://www.institut-roselllallemand.com/page.php?idP age=33&idLangue=2

By-products of fermentation

Dried Yeast - Feed Compound X Losses of EtOH

CO₂ - mixing

- production of dry ice

Distillation

-different arrangement of distillation columns e.g. mash + rectification column followed by rafination column

formation of azeotroph ethanol/water
98.3% v/v ethanol /2.7% v/v water
with lower boiling point than pure
ethanol impossible to gain pure
ethanol using distillation under
atmospheric pressure

http://www.cukrovaryttd.cz/vyroba/ zavody/agroetanol-ttd-lihovardobrovice/

Different fate of ethanol – superfine ethanol for alcoholic beverages of anhydrous ethanol ?

Distillation

Boiling point EtOH 78.32 °C

Rectification = Repeated distillation

Azeotropic mixture - EtOH: water

97.3% v / v: 2.7% v / v, boiling point 78.15 ° C

Azeotropic point - the volatility of both components is the same

 \checkmark

Reduction of column pressure - shift of azeotropic point \rightarrow p = 9.3 kPa - anhydrous alcohol

Destillation

Deflegmation - fractional condensation of the steam mixture - condensation of the water condenses (condensation of the alcohol content in vapors) reflux - reflux

Backflow ratio - R = L / D

- L moles (amount) of returned distillate
- D moles of the distillate removed

Destillation

Refining coefficient

The ratio between the impurities in the vapor and the liquid

> 1 head of boil, compounds more volatile then ethanol

<1bottom of boil, compounds less volatile than ethanol

Dependence between EtOH in vapour and in liquid during equilibrium distillation

Two columns mash distillation

Barbet refining device

1- dropping column, 2,8,4 - cooker, 3, 9,1; 9.2; 15 and 16 - deflector; 4, 10, 17 - condensator;

5, 11, 18, 22 - cooler; 7 - a refining column with a luter column; 13 – bottom boil column;

19 – fusel washing machine; 20 - a decanter to separate the brim;

- 21 mixing of raw alcohol with luter water (LV); JL refined alcohol;
- TL technical alcohol; Př- fusel; Do -fusel

Anhydrous ethanol

- Molecular sieves (zeolites) in column arrangement – separation of ethanol/water based on size of molecules
- Azeotropic distillation increase of partial pressure of water by addition of benzen
- 3. Extractive distillation addition of hygroscopic liquid (glycerol)
- 4. Distillation under decreased pressure

Zeolites structures

Fig. 2. Heterogeneous azeotropic distillation of ethanol-water mixtures.

Fig. 3. Extractive distillation of ethanol-water mixture with ethylene glycol.

Production of alcohol

Duties of the distillery:

- Alcohol production on the device guarantees reliable detection of the amount of alcohol produced
- Measuring the amount of alcohol produced by approved meters
- Customs supervision (excise duty)

Storage of alcohol

Working with Class I flammables Room ventilation - max. $1 \text{ g} / \text{m}^3$ Flash point 12°C for 100% alcohol **Explosion** limits: 2.8% to 13.7% vapor in air 50 to 260 g / m^3 Prohibition of open flame handling

Denaturation of ethanol

Alcohol for burning, heating, technical purposes Denaturant - a mixture of 3-4 substances Unpleasant taste and smell It can not be easily removed from alcohol 1-2%

Denaturation for fuel purposes - mixture of naphtha, kerosene and rock-oil

By-products of ethanol fermentation

- 1. Biomass
- 2. Stillage, destillation slops-feed, fertilizer, biogas production
- 3. CO₂
- 4. Fusel

Use of anhydrous ethanol - mixing with petrol

EU - 5.75% mandatory ethanol content in petrol fuels RED - renewable energy directive - 2020 targets

Other blends - E10, E85, E75 (FFV -flexi fuel vehicles- engine modification)

USA - RFS (renewable Fuel standard) Mixing up to 10%

Fuel ethanol from corn (maize)

http://me1065.wikidot.com/ethanol-as-a-fuel

 \odot

SA

(†)

BY

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture VI

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work. If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Gas fermentation to ethanol

BRI Process Schematic

http://thefraserdomain.typepad.com/energy/2005/12/synthesis_gas _f.html

- 1. Biomass gassification
- 2. Wood-Ljungdahl metabolic pathway, acetogens
- 1. Bioreactor design, medium composition
- 2. Process parameters
- 3. Cell separation, product recovery
- 4. Commercialization
- 5. Conclusion

Gas fermentation to ethanol

- Combination of thermochemical and biochemical processing of biomass
- Gassification using high temperature (up to 1500°C) and oxidizing agent (air, oxygen)-drying, pyrolysis, oxidation, reduction
- Processing mixture of gases CO, CO₂, H₂, N₂, CH_{4....}
- Acetogenic bacteria, anaerobic, mesophilic or thermophilic
- Reductive acetyl-CoA pathway, Wood-Ljungdahl pathway
- Main products acetate, ethanol, butyrate, lactate, butanol...

Biomass gassification

Biomass gassification

- Upstream operations drying, <u>size reduction</u>, pyrolysis, fractionation, leaching
- Gassification temperature 600-1000°C
- Oxidizing agent air, steam, oxygen

https://www.slideshare.net/agpoliveira/downdraft-biomassgasification-experimental-investigation-and-aspen-plussimulation

Syngas composition and requirements for microbial utilization

• Biomass derived syngas composition:

CO (8-15 %vol.), **CO**₂ (15-17 % vol.), **H**₂ (3-18 % vol.), **N**₂ (56-65 % vol.), **CH**₄ (0,4-6 % vol.), **other** (0,4-3 % vol.)

Increase of syngas partial pressure can increase cell density!

Common impurities:

Tar, ash, char, ethan, ethylene, acetylene, H₂S, NH₃, NO, CN⁻

The impurities may cause inhibition/stimulation of syngas utilization in dependance on the particular microorganism.

Our Rock Star: Clostridium autoethanogenum

Gases were the only carbon and energy source used by the first life forms.

http://www.lanzatech.com/innovation/te

Ð

BY

CC

 (\mathfrak{I})

SA

Wood-Ljungdahl metabolic pathway

water-gas shift reaction

 $CO + H_2O \longrightarrow CO_2 + 2H$

Fd2

Acetogens

Anaerobic, autotrophic bacteria Different species –

different

products

sole end product -

acetate

Acetate + ethanol –

Clostridium ljungdahlii

CODH/ACS – carbon monooxide dehydrogenase/acetyl CoA synthase

Example of mesophilic acetogens

Species	Substrate	Product(s)	T _{opt} (°C)	pH _{opt}	Genome Status
Mesophilic Microorganisms					
Acetobacterium woodii	H ₂ /CO ₂ , CO	Acetate	30	6.8	Available
Acetonema longum	H ₂ /CO ₂	Acetate, butyrate	30-33	7.8	
Alkalibaculum bacchi	H ₂ /CO ₂ , CO	Acetate, ethanol	37	8.0-8.5	
Blautia producta	H ₂ /CO ₂ , CO	Acetate	37	7	
Butyribacterium methylotrophicum	H ₂ /CO ₂ , CO	Acetate, ethanol, butyrate, butanol	37	6	7
Clostridium aceticum	H ₂ /CO ₂ , CO	Acetate	30	8.3	Under construction
Clostridium autoethanogenum	H ₂ /CO ₂ , CO	Acetate, ethanol, 2,3- butanediol, lactate	37	5.8-6.0	
Clostridium carboxidivorans or "P7"	H ₂ /CO ₂ , CO	Acetate, ethanol, butyrate, butanol, lactate	38	6.2	Draft
Clostridium drakei	H ₂ /CO ₂ , CO	Acetate, ethanol, butyrate	25-30	5.8-6.9	
Clostridium formicoaceticum	CO	Acetate, formate	37	NR	
Clostridium glycolicum	H ₂ /CO ₂	Acetate	37-40	7.0-7.5	
Clostridium ljungdahlii	H ₂ /CO ₂ , CO	Acetate, ethanol, 2,3- butanediol, lactate	37	6	Available
Clostridium magnum	H ₂ /CO ₂	Acetate	30-32	7.0	

http://cdn.intechopen.com/ pdfs-wm/43690.pdf

Scheme of basic metabolic pathways and energy conservation in *C. ljungdahlii* when growing heterotrophically on sugars (hexoses or pentoses) or autotrophically on gases (CO or CO2 + H2).

3

SA

BY

СС

Michael Köpke et al. PNAS 2010;107:13087-13092
Bioreactor design

- Continuous stirred tank reactor (CSTR)
- Bubble column reactor
- Immobilized cell column reactor
- Trickle bed reactor

Gas to liquid/solid mass transfer is rate limiting step

Table 2. Mass-Transfer Coefficients from Synthesis-Gas Fermentations

reactor type	biological system	feedstock	$K_{\rm L}a$ (h ⁻¹)
stirred tank - 200 rpm	B. methylotrophicum	СО	14.2
stirred tank - 300 rpm	SRB mixed culture	synthesis-gas mix	31 for CO
-			75 for H ₂
stirred tank - 300 rpm	C. ljungdahlii	synthesis-gas mix	35 for CO
stirred tank - 300 rpm	R. rubrum, M. formicum, M. barkeri	synthesis-gas mix	28.1 for CO
stirred tank - 450 rpm	R. rubrum, M. formicum, M. barkeri	synthesis-gas mix	101 for CO
stirred tank - 200 rpm	B. methylotrophicum	ČO	90.6 for CO
microbubble sparging			
stirred tank - 300 rpm	SRB mixed culture	synthesis-gas mix	104 for CO
microbubble sparging			190 for H ₂
packed-bubble column	R. rubrum, M. formicum, M. barkeri	synthesis-gas mix	2.1
trickle bed	R. rubrum, M. formicum, M. barkeri	synthesis-gas mix	55.5
trickle bed	SRB mixed culture	synthesis-gas mix	121 for CO
			335 for H ₂
trickle bed	C. ljungdahlii	synthesis-gas mix	137 for CO

Trickle bed reactor

Medium formulation

- Syngas quality and partial pressure
- Addition of other medium components vitamins, trace metals, nitrogen source...- balanced – good for bacterial growth X limitation for solventogenesis
- Reducing agents low redox potential necessary for strict anaerobes – sodium thioglycolate, ascorbic acid, methyl viologen...
- pH 5-6
- Temperature 30-40°C for mesophilic, 55-60°C thermophilic
- Growth can be bi-phasic
- Can form spores
- Many acetogens can grow heterotrophically (fructose, glycerol..)
- Can be adapted for biofilm formation (NaCl stress)

Clostridium coskatii

Yield, concentration, productivity

Biocatalysts	Reactor/gas composition ^a	Products (g/L)	Yield from CO ^b (%)	Productivity ^c (mg/L·h)	min
Clostridium ljungdahlii	CSTR with cell recycle (55% CO, 20% $H_2,10\%$ CO $_2$ and 15% Ar)	Ethanol: 48 Acetate: 3.0	70.2	168.0	required f
	CSTR without cell recycle (55% CO, 20% H2, 10% CO2 and 15% Ar)	Ethanol: 6.50 Acetate: 5.43	38.9	48.8	Misleadir informati http://www ducer.com/a 43/a-waste- proposition Yield calculati Acetogens
	Two stage CSTR & bubble column with cell recycle (60%CO, 35% H ₂ and 5% CO ₂)	Ethanol: 19.7 Acetate: 8.6	100	306.4	
Clostridium carboxidivorans	Bubble column reactor without cell recycle (25% CO, 15% CO ₂ , 60% $\mathrm{N_2})$	Ethanol: 1.6 Acetate: 0.4 Butanol: 0.6	39.6	42.7	
	HFR (20% CO, 15% CO ₂ , 5% H ₂ , 60% N ₂)	Ethanol: 24.0 Acetate: 5.0	72.0	112.5	
	Bubble column reactor (20% CO, 15% CO ₂ , 5% H ₂ 60% N ₂) MBR (20% CO, 15% CO ₂ , 5% H ₂ , 60% N ₂)	Ethanol: 3.2 Acetate: 2.35	51.0	64.1	
		Ethanol: 4.9 Acetate: 3.1	51.0	97.9	
	Serum bottles (70% CO, 20% H ₂ , 10% CO ₂)	Ethanol: 3.0 Acetate: 0.5 Butanol: 1.0 Hexanol: 0.9	ND^{d}	21.4	$6CO + 3H_2O - C_2H_5OH + 4CC$
Clostridium ragsdalei	CSTR (20% CO, 15% CO ₂ , 5% H ₂ , 60% N ₂)	Ethanol: 9.6 Acetate: 3.4	60.0	26.7	S.cere vis iae
Mixed culture of Alkalibaculum bacchi & C. propionicum	CSTR without cell recycle (28% CO, 60% $\rm H_2,12\%$ $\rm N_2)$	Ethanol: 8.0 Acetate: 1.1 Propanol: 6.0 Butanol: 1.1	30.6	40.0	C ₆ H ₁₂ O ₆ 2 2CO ₂
Clostridium autoethanogenum	CSTR without cell recycle (100% CO)	Ethanol: 0.9 Acetate: 0.9	ND	4.5	_
^a CSTR: continuous stirred tank reactor; HFR: hollow fiber membrane reactor; MBR: monolithic biofilm reactor ^b Ethanol yield = (mol EtOH consumed/mol CO consumed)*100%/(1 mol EtOH/6 mol CO)				nanol productivity D: not determined	-

utes m when biomass enters fier and exits as ethano

ng ion

.ethanolpro articles/103 -filledion: \rightarrow \mathbf{D}_2

 $C_2H_5OH +$

2800-4000

Devarapalli and Atiyeh / Biofuel R (CC) (2015) 268-280

S.cerevisiae corn, sugar beet ethanol 120 95-98

Cell separation and product recovery

<u>Cell separation</u> – ultra filtration units, spiral wound filtration system, hollow fibres, cell recycling membranes, centrifugation

<u>Product recovery</u> – low product concentration, inhibition of producing strain Before/ in addition to distillation – liquid-liquid extraction, perstraction, pervaporation, gas stripping...

http://machinedesign.com/news/scanning-ideas-betterway-make-ethanol

Commercialization – Lanza Tech

Pilot plant in China

Mobile pilot in USA

 \odot

SA

Û By

Conclusion for syngas to ethanol process

- from microbiological point of view extremely interesting
- from bioengineering point of view demanding
- from biotechnological point of view challenging
- from industrial point of view underdeveloped
 Overall evaluation promissing

Biobutanol production - Why biobutanol?

As Fuel extender

In comparison with ethanol:

- Increased engine power
- Lower corrosivity
- Hydrofobicity
- Lower volatility

1-butanol

- Up to 30% v/v in gasoline no need of engine modification butanol /gasoline blend demonstrated by BP in BMW cars on London Olympic Games
- Possible to use same transportation system as in case of gasoline

Clostridium bacteria – ability to ferment glucose, saccharose, starch, lactose, inulin and pentoses present in lignocellulosic hydrolysates

Effect of butanol in gasoline fuel on emissions of regulated pollutants (CO, HC, NO_x) and aldehydes in ECE 83.03 emission test

■ Reference ■ 10 % Biobutanol ■ 20 % Biobutanol ■ 30 % Biobutanol

Biofuels/book 4, (2011), InTech Open Access

History of industrial acetone-butanolethanol (ABE) fermentation

World

- Ch.Weizmann strains isolation, technology development
- WWI- first industrial ABE fermentation in England, then in Canada
- Terra Haute plant in USA
- After 1936 –plant all over the world
- WWII Bromborough semi-cont. fermentation
- In South Africa till 1983
- China, the Soviet Union till 1980s

Czechoslovakia

- isolation of wild strains from soil before WWII
- research of ABE fermentation Prof.
 J. Dyr (ICT Prague) 1950s
- 1952-1965 butanol plant in Czechoslovakia (feedstock – potatoes, rye, molasses)

Present situation regarding industrial ABE fermentation

about 100 000 t of acetone and butanol per year produced by fermentation in China ???, small plant (8000 t per year) in Brazil - 2010

In the rest of the world – race for 1-butanol production plant in Europe, U.S.A., Asian countries... Butamax, Green Biologics, Cobalt Technologies, Butalco ...

shift of interest from biofuel to pure chemical

Ethanol X Butanol

- ✓ Single microorganism yeast S.cerevisiae
- ✓ ethanol -primary metabolite, its formation associated with growth
- ✓ Relatively low demands on sterilization
- ✓ S.cerevisiaefacultatively anaerobic

- ✓ Different species of Clostridium
- Butanol stationary phase metabolite; probably associated with sporulation onset
- Sterilization necessary

 high risk of
 contamination or
 bacteriophage attack
- Clostridia strictly anaerobic

Fermentation schemes

Ethanol $C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$

Butanol

 $C_{6}H_{12}O_{6} \longrightarrow 1,35 H_{2} + 2,21 CO_{2} + 0,56 C_{4}H_{9}OH$ + 0,22 C₃H₅O + 0,07 C₂H₅OH + 0,14 C₂H₂O₂ + 0,04 C₄H₈O₂

(Jones and Woods, 1986)

butanol yield – max. about 30-35%, solvent (sum ABE) yield – max. 40-45%

Production microorganisms

Clostridium bacteria: C.acetobutylicum, C.beijerinckii, C.saccharoperbutylacetonicum...

- G⁺ type of cell wall
- anaerobic
- Sporulating (accumulation of stock polysaccharide granulose prior sporulation)
- heterofermentative

C.pasteurianum 1-3 vegetative cells, 4-7 sporulating cells, 8,9 mature spores

+ GM non clostridial microorganisms - efficient 1-butanol production not demonstrated

(for survey see Kharkwal et. al. (2009) Rec.Pat. Biotechnol. 3, 202)

Clostridial life cycle versus metabolites formation

Simplified metabolic scheme of ABE fermentation

Handling anaerobic bacteria

- <u>Storage</u> freezing,
 spore suspensions,
 lyophilization
- <u>Cultivation medium</u>

 removal of oxygen,
 addition of reducing
 agents to the
 medium (sodium
 thioglycolate,
 cysteine.HCl...)

Small scale cultivation:

- Hungate technique tubes
- Anaerostats
- Anaerobic chamber (glove box)

J. Petrol. Env. Biotechnol. 2011

Anaerostat, anaerobic chamber

Purging with nitrogen, CO_2 or gas mixture

Gas exchange using cylinders with oxygen free gases, small airlock chamber for input and output of material, work with bare hands, thermostat

ABE fermentation

- Medium preparation feedstock (same as for ethanol); starch hydrolysis not necessary, addition of complex nitrogen sources (clostridia are often auxotrophs)
- 2. Bacteria propagation under strict anaerobic condition
- 3. Fermentation 37°C, pH 7, 36-72h, biphasic processgrowth associated with acids generation, stationary phase (sporulation) associated with solvents formation; max. butanol/ABE final concentrations – 12-20/20-30 g/l

rod shaped vegetative cells of *C.beijerinckii*

Fermentation arrangement

Batch – simple, max. final butanol concentration Fed-batch – reduction of lag growth phase —> slight productivity increase

Continuous – in one bioreactor – oscillatory behaviour due to life cycle; in more bioreactors

pros

- no inoculum preparation
- reduction of operation times necessary for cleaning and sterilization
 increase of productivity
- and yield ?

cons

- danger of cells wash-out
- pressure on cells growth risk of strain degeneration
- stringently aseptic conditions
- lower end product concentrations
- sterilization of bigger medium
 volume higher amount of waste

1-butanol from sugar beet juice by C.beijerinckii

1.00 $C_{12}H_{22}O_{11} \longrightarrow 1.22 C_4H_{10}O + 0.60 C_3H_6O + 0.04 C_2H_6O + 0.25 C_2H_4O_2 +$

0.20 C₄H₈O₂ + **1.60** CO₂ + **0.80** H₂

Patakova et al. (2011) Sugar and Sugar Beet

3

SA

BY

1-butanol production from wheat straw hydrolysate

Hydrolysate composition (in g/l): glucose 20, xylose 10, arabinose 2 -necessary to supplement source of nitrogen and other components

Time (h)

Yield of solvents 0.46 g/g cellulose

Processing of waste feather

Feather peptone

Joint hydrolysis of straw and feather

Wet poultry feather

Mixed hydrolysate straw + feather Preparation step

Joint hydrolysate Different dosing of material

Distillation – final separation step for 1butanol

- in past mash destillation high consumption of energy (high volumes)
- azeotroph butanol water (b.p. 93°C, 55% butanol) extractive distillation or distillation with decantation
- irreplacable method for final butanol separation

Currently possible pre-concentration before distilation or integration of separation with fermentation (alleviation of product toxicity)

Membrane techniques

Pervaporation Perstraction Reverse osmosis

Non- membrane techniques

Gas stripping Extraction liquid-liquid Sorption

+ final distillation

Main bottleneck - Toxicity of 1-butanol

Wild strains- max. 20 g/l solvents

<u>Hyperproducing</u> <u>mutants of</u> <u>Clostridium</u>

- C.beijerinckii BA101 –
 30 g/l solvents

<u>GM microorganisms</u> X 1-butanol tolerance by microorganisms is approx. same

How to succeed with biobutanol ?

Biorefinery approach

necessary

Biofuels by-products

Distillation stillage – biogas production, fodder component (*Clostridium* can acumulate riboflavin), fertilizer (DDGS)

Gaseous products: $CO_2 - dry$ ice, liquid CO_2 H_2 (in ABE process) – heat generation

Acetone, ethanol (from ABE) - chemicals Water – must be recycled Heat – must be recovered

Thank you very much for your attention

petra.patakova@vscht.cz

Clostridium beijerinckii cells accumulating granulose

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture VII

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Fruit brandies and spirits

Fermented spirits

Typical feedstock Seed or indigenous microbial culture Batch fermentation Pot-still or patent still distillation (Maturation in casks)

Spirits produced by "cold way"

Main feedstock – superfine ethanol + water + sugar syrup + herbs and their water or ethanol leaches or extracts + pigments + bonificators + egg yolks + milk + coffee...(emulsion spirits e.g. Baileys)

Main problem – clouds, precipitates

Fermentation of fruits

1) Chemical composition of fruits

a) Saccharides

berries3-19%

stone fruit..... 6-25%

Apples, pears..... 5-15%

Main components –monosaccharides– glucose, fructose

Saccharose

Polysaccharides – starch, dextrins, cellulose, hemicellulose, inulin

b)Other nitrogen-free compounds

Organic acids:

- volatile- formic, acetic
- Non-volatile malic, tartaric, citric, lactic, benzoic, salicylic
- waxes –esthers of fatty acids with higher alcohols
- Fragrant compounds esthers of organic acids, aldehydes, ketones, higher alcohols

c) Nitrogen compounds

proteins, amino acids

d) Mineral componds (ash) K,Na, Ca, Mg, P, Cl, Mn, Cu, Fe

Water – 72-93%

Spontanneous ethanol fermentation

Yeast

1.Ascomycetes yeast

Saccharomyces cerevisiae –usually upper fermentation at higher temperature

Other yeast: S.cerevisiae carlsbengensis (bottom), S.pasterianus, S. fragilis, S.melis

Schizosaccharomyces pombe

Hansenula anomala, Pichia (oxidation of EtOH to acetic acid)

Kluyveromyces marxianus

2. Family Cryptococcaceae

Candida –oxidation of ethanol up to CO₂, formation of pseudomycelium

Bacteria in mash

1. Lactic acid bacteria

Lacobacillus delbrueckii, L.buchneri, L.plantarum

Streptococcus, Leuconostoc

lactic acid formation

2. Acetic acid bacteria

Acetobacter pasterianum, A.xylinum, A.aceti, A.suboxydans

Oxidation of ethanol to acetic acid or to CO₂, oxidation of glucose to gluconic acid,on the surface of fermentation mash, short rods

3. Butyric and propionic acid bacteria

Clostridium butyricum, C.sporogenes, Granulobacter

Sporeforming bacteria

Anaerobic and facultatively anaerobic Formation of butyric, propionic, formic, acetic and lactic acids and higher alcohols

4. Pectin degrading bacteria

Methanol formation

Sporeforming

Plectridium pectinovorum, Granulobacter pectinovorum

5. Rotting bacteria

Degradation of proteins, formation of hydrogen sulphide, ammonia, aerobic and anaerobic *Pseudomonas, Serratia, Proteus*

C)Filamentous fungi in mash

Strictly aerobic

On the walls, vats, on the surface of the yeast, together with the aerobic yeasts form the so-called blanket
Production of organic acids from carbohydrates
On fruit– Aspergillus (A.glaucus, A.oryzae, A.niger)
Blanket– Penicillium – fungal odour
Botrytis –tannin oxidation
Rhizopus, Mucor, Oospora, Fusarium, Cladosporium

Formation of methanol

Protopectin – complex of pectin with cellulose, arabanes and galactanes

↓ protopectinase Pectin

Methyl esther of poly-D-galacturonic acid

↓pectinesterase, polygalacturonase

CH₃OH + mono galacturonic acids

gencibiosa

benzaldehydkyanhydrin

Formation of benzaldehyde and hydrogen cyanide

Fermentation

Fermentation room – closed building, sewarage, drainage, aeration
Fermentation vessels – wood, ferroconcrete, stainless steel

Fermentation

Course of fermentation

- Beginning of fermentation
- Stormy fermentation –CO₂, decrease of sugar concentration, increase of EtOH
- Slow fermentation
- End of fermentation no CO₂, sinking fermentation cover

Distillation and rectification

- Simple distillation
- Cupreous vessels
- Heating of distillation boiler
- Quality of fermentation!!!
- (pH)
- Homogenization
- Filling the boiler -1/2- 2/3
- Destillation slow spillage, substance, end

Distillation room

- Rectification gentle
- Dilution of distillates distilled or decarbonized water
- Removal of clouds filtration, clarification storage of distillates
- maturation –

esterification-bottling

Plum brandy

- Different kinds of plums
- Saccharides content > 8%,
- Shaking down into canvas
- Fallen fruit –special treatment

washing, inoculum necessary

Without pressing, with stones—indigenous fermentation by cold way (September— December)

Slow distillation, substance immediately bottled

Whisky

Scotch, American, Irish

1. Scotch whisky

<u>malt</u>

Exclusively malt

Destillation "pot still"

blended whisky

Highland, Lowland

grain

Malt + barley Destillation "patent still"

Factors affecting quality

- water
- Destillation device
- wood
- climate
- people!

- kilning the malt over a peat fire
- Just 2 destillation
- Maturation in casks

2. American whisky (grain)

Maize – bourbon whisky

Rye – rye whisky

Destillation "patent still"

Fermentation: sweet mash –yeast inoculation sour mash – bourbon – inoculation from previous fermentation– alcohol + lactic fermentation

- 1. Cereal grains
- Malt
- 3. Malt bin
- 4. Cereal grain bin
- 5. Unloading elevator
- Dust filter
- Collector
- 8. Scalperator
- Millerator
- 10. Reclaiming exhauster

20. Converter

Malt receiver

14. Mill feeder

15. Roller mills

17. Malt infusion

16. Precooker

18. Cooker

13. Automatic scale

12. Cereal grain receiver

Barometric condenser

- 21. Mash coolers
- 22. Fermenter
- 23. Final yeast propagator
- 24. Yeast culture and intermediate yeast propagator
- 25. Fermented-mash holding vessel
- 26. Stillage return system
- 27. Stillage flow to recovery system
- 28. Whisky separating column

- 29. Heat exchanger
- 30. Dephlegamtor
- Vent condenser
- 32. Product cooler
- 33. Selective distillation column
- 34. Product concentrating column
- 35. Aldehyde concentrating column
- 36. Fusel oil concentrating column
- 37. Fusel oil decanter

Rum

- Sugar cane juice and foam, mollases
- Destillatio + rectification
- Maturation in casks up to 10 years
- 3 brands according to esther number
- X artificial rum alcohol +

essence + pigment + sweetener

Brandy

- Feedstock wine destillation immediately after fermentation together with yeast
- Maturation in oak casks
- Cognac –only specific area in France

Feedstock for non-fermented spirits

- Fine ethanol
- water
- sugar syrups

"normal syrup" – 100 kg sugar/42l distilled water, boiling + 75 g citric acid, 10 min, removing foam starch syrup – glucose, maltose, dextrines

• Lactose syrup

<u>Drugs (plants):</u>

- Extremely bitter sage-brush, aloe...
- Very bitter gentian, centaury…
- Aromatic, mildly bitter –hop, orange slice.....
- Aromatic, non-bitter –chamomile, mint....
- Mildly aromatic, non-bitter lavender, thyme...
- ➤ faintly aromatic ruta...
- Aromatic, sharply spice pepper...
- Aromatic with vanilla flavour vanilla..
- Aromatic with sweet taste annise, fennel...
- Aromatic, bitter almonds..
- ➢ Spice − cloves
- Plant and animal pigments elderberries, cochineal..

• Extracts, mixture of extracts

Extraction, distillation, pressing, maceration, mixing extracts

- Pigments
- a) Natural fruit juices (blackberries, raspberries, cherries, black current, elderberries),

pigment plants (turmeric, mallow, marigold, saffron..), caramel

b) artificial pigments

Bonificators

Rounding taste, flavour enrichment

- wines-malaga, sherry, port
- Aromatic resins
- Aromatic oils

Production of liqueurs and non-sweet spirits

- Basic operation step mixing– mechanical or pneumatic
- Addition of individual components gradually
- Ethanol addition –by weigh
- Maturation (short)
- Bottling

Emulsion spirits

Feedstock – yolks (10-16/l), sugar, fine ethanol, destillate, (milk, cacao, coffee..)

Production procedure:

Whipping yolks with water (+ eggwhite), straining

Emulgation, addition of syrup, heating to 70°C Cooling to 35°C, addition of ethanol + distillate Mixing, cooling

maturation

bottling

Fruit spirits (e.g. Kirsch)

- Fruit juices- clarification, pectolysis, filtration
- Maturation X oxidation, clouds
- **Herbal liquers**
- Maceration of plants, filtration, distillation
- Mixing, removal of clouds
- consolidation
- maturation
- bottling

Vodka

- Feedstock 2x rectified ethanol of any origin
- Production of "sortirovka" –mixing ethanol with water
- 1. Sedimentation of precipitates
- 2. Addition NaHCO₃ + sodium acetate
- 3. Filtration using active carbon

Formation of clouds

- Salts of anorganic and organic acids from water - Cu, Mg, Fe, Al, Zn (acetates, carbonates)
- Tannins colour clouds coloid solutions
- Organic compounds oil clouds, opalescence, etheric oils, terpenes, resins

Legislative framework for the production of distillates, spirits and ethanol

- The Act on alcohol No. 61/1997 Coll.
- Food law
- Small fruit distilleries up to 30 | EtOH / household / year
- Not allowed to distill ethanol at home -Criminal Code No. 392/1992 Coll. § 194a illicit alcohol production

1 vodka 2 vodkas 3 vodkas 5 vodkas

Thank you for your attention

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture VIII

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Use in foods: acidifying agent, pH regulator, production of jams and marmelades...

Main producent- Aspergillus niger

Aspergillus niger

Preparation of production strain

- Selection testing colonies
- Mutagenesis and selection
- Conservation of spores in dried state
- lyofilization

Formation of citric acid

Factors affecting citric acid formation I

- Trace elements Fe, Zn, Mn, Cu
- pH: spores germination 4 5, production 1,4 - 3,5, at higher pH gluconic and ocalic acids
- Aeration (too quick affects fixation of CO₂ in surface production X submese production)
- Temperature 28 34°C

Factors affecting citric acid formation II

- Lipids –antifoaming agents–yield increase
- Inoculum –surface way– spores, submerse way spores or mycelium

Surface way of production

Surface way of production

Surface way of production

- cultivation medium molasses 15%
- Filling medium
- Inoculum spores
- Cycle of sterile temperated
- Non-diving mycelium
- 8-9 days, 10% citric acid
- Desinfection steam, formaldehyde

Submerse way of production

Submerse production

Substrate preparation – flow sterilazation, Inoculum –seed bioreactor

Cultivation – mixing, cooling, aeration, anti-foaming, pH control, 4-7 days

In-time endingX lysis, acid consumption

Isolation of citric acid

- Filtration of mycelium, draining of dishes
- Hot precipitaion at pH 5,8 with CaCO₃
- Hot filtration— insoluble calcium citrate
- Decomposition with sulphuric acid, filtration of gypsum (CaSO₄)
- Purification
 – active carbon, ion-exchanging columns
- Concentration
- Crystalisation in form of mono hydrate

Acetic acid

CH₃COOH

 \odot

SA

Acetobacter aceti

Oxidation of ethanol to acetic acid

 $2 \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{OH} + \operatorname{O}_2 \longrightarrow 2 \operatorname{CH}_3 \operatorname{CHO} + 2 \operatorname{H}_2 \operatorname{O}$

 $2 \operatorname{CH}_3 \operatorname{CHO} + \operatorname{O}_2 \longrightarrow 2 \operatorname{CH}_3 \operatorname{COOH}$

Over-acidification

 $CH_3COOH + 2O_2 \longrightarrow 2CO_2 + 2H_2O$

Contamination with *Acetobacter peroxydans* Failure in technology –lack of etanol

Factors affecting production and quality of vinegar

- Oxygen
- Concentration of ethanol optimum 2.5 3%,

below 0.3% over oxidation

Temperature

- Nutrients N,P salts, trace elements
- Feedstock
- Way of production

Production by Orleans method

- Slow acidification
- Surface way formation of kris (pellicle) in open vessel (cask)
- Acidification— 1-3 months
- Temperature 20°C
- Remaining ethanol 0.5%, acetic acid 6%

Tsubo Vinegar is a production method which makes vinegar at one time in a jar.

The koji on the water surface serves as a lid, and saccharification and alcoholic fermentation is happen. When acetic acid fermentation progresses, the koji on the water surface sinks.

It progresses maturing and vinegar is made. Unrefined sake is precipitated at a bottom.

Rapid acidification

- Preparation of substrate- 25-30% ethanol+ nutrients, dilution to 2.5-3% ethanol
- 2. Packed-bed bioreactor with immobilized acetic acid bacteria –packing is trickled with substrate using spraying
- 3. Periodic system substrate circulates with the bioreactor (7-8 days), aeration with counter air

- 4. End of one batch 11% acetic acid, 0.3% ethanol
- 5.Supressing over oxidation–flooding bioreactor with vinegar– 13%, cooling, stopping aeration
- 6. Life time of package -20-30 years, regeneration with hot and col water

Beech shavings

Figure 3 The quick vinegar process.

Submerse production of vinegar

- in bioreactor (acetator) with special mixing (self-priming turbine)
- Batch cultivation 48-72 h
- Substrate 11-12% ethanol + nutrients
- Product 11-12% acetic acid
- Filtration of bacteria

Figure 4 The Frings Acetator.

Figure 1. The Frings Aerator. a = hollow rotor; b = stator; c = air suction pipe; d = openings for air exit; e = wedges to form the channels; f = channels to form the beams of air–liquid emulsion.

Frings acetator

Final adjustments

- Dilution to 8%
- Clarification, filtration, maturation, pasterization, filling
- aromatization

Defects of vinegar Nematode

- Mite
- fly

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture X

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

The first industrial fermentation process in the USA in 1881

Use of lactic acid

- Preservative
- GRAS food additive
- Leaching skins
- Pharmacy
- Biodegradable Plastics (PLA)

1.3 kg CO2 eq./kg polymer and 42 MJ/kg polymer versus PET 3.2 kg CO2 eq./kg polymer and 80 MJ/kg polymer,

	Food industry		
	 acidulants preservatives flavours pH regulators improving microbial quality mineral fortification 		
Cosmetic industry		Chemical industry	Chemical feedstock
 moisturizers skin-lightening agents skin-rejuvenating agents pH regulators anti-acne agents humectants anti-tartar agents 	Lactic acid (CH ₃ CHOHCOOH)	 descaling agents pH regulators neutralizers chiral intermediates green solvents cleaning agents slow acid release agents metal complexing agents 	 propylene oxide acetaldehyde acrylic acid propanoic acid 2,3-pentanedione ethyl lactate dilactide poly(lactic acid)
	Pharmaceutical industry		
	 parenteral/I.V. solution dialysis solution mineral preparations tablettings prostheses surgical sutures 		

Chemical production

(a) Addition of Hydrogen CyanideCatalyst

 $\underset{Acetaldehyde}{CH_3CHO} + \underset{Hydrogen \ cyanide}{HCN} \underset{Catalyst}{\overset{Catalyst}{\longrightarrow}} CH_3CHOHCN$

(b) Hydrolysis by H₂SO₄

 $\begin{array}{c} CH_{3}CHOHCN + H_{2}O + 1/2 & H_{2}SO_{4} \rightarrow \\ & \\ Lactonitrile & \\ CH_{3}CHOHCOOH + \frac{1}{2} & (NH_{4})2SO_{4} \end{array} \xrightarrow{Ammonium salt} \end{array}$

(c) Esterification

 $\begin{array}{c} CH_{3}CHOHCOOH+CH_{3}OH\ CH_{3} \rightarrow CHOHCOOCH_{3}+H_{2}O\\ {}_{Lactic\ acid} & {}_{Methanol} & {}_{Methyl\ lactate} \end{array}$

(d) Hydrolysis by H₂O

 $\begin{array}{c} CH_{3}CHOHCOOCH_{3} + H_{2}O \rightarrow CH_{3}CHOHCOOH + CH_{3}OH \\ Methyl lactate & Lactic acid & Methanol \end{array}$

Production microorganisms

- Homofermentativní G⁺ mléčné bakterie: Lactobacillus, Streptococcus
 L. delbrueckii ssp. delbrueckii, L.delbrueckii ssp. Bulgaricus
 Lactobacillus plantarum
- Plísně:

Rhizopus oryzae

Metabolic pathway

Formation of racemic mixture

Properties of lactic acid bacteria (LAB)

- Relation to oxygen: anaerobic, microaerophilic, aerotolerant
- Often auxotrophic amino acids, vitamins, peptides
- Genetically Unstable Plasmid Inheritance, Conjugation, Transduction, Transposition
- Susceptible to bacteriophage attack
- Mesophilic or thermophilic
- Creation of bacteriocins
- Sensitive to pH drop
- They use glucose, fructose, maltose, lactose, sucrose

Cultivation of LAB

- Substrate: lactose (whey), glucose, sucrose, starch + nutrients (complex sources of amino acids)
- Newly hydrolysates of lignocellulosic materials
- Storage of the strain frozen
- The need to regulate pH during cultivation
- Types of cultivation: Batch, fed-batch, continuous, immobilized systems

Possible use of agricultural waste

Sugarcane waste

Banana waste

Bartey waste

Peanut husk

Process 1 – use of calcium lactate

- Concentration of sugar source 120-180 g / L, complex sources of nitrogen
- Concrete bioreactors with a special surface
- Cultivation temperature> 45°C
- The addition of CaCO₃ or Ca (OH)₂ (maintaining the pH between 5.5 and 6)
- Inoculum 10% volume
- Decomposition of sulfuric acid lactate, formation of gypsum

Fig. 2. Industrial production of lactic acid (BUCHTA, 1983; with permission from VCH).

Process 2 – use of ammonium lactate

Neutralization of the formed acid with ammonia Esterification of ammonium lactate, release of ammonium ion

Distillation

Fig. 3. Industrial production of lactic acid using the ammonium lactate process.

Izolation of lactic acid

- Calcium lactate precipitation, filtration, release from salt by increasing T and pH, again precipitation and thickening
- Solvent extraction with isopropyl ether, isobutanol, re-extraction into water, precipitation
- Sorbtion on ionexes
- Electrodialysis
- Distillation after esterification with methanol

Use of electrodialysis for the purification of lactic acid

0

SA

BY

Purification of lactic acid

- Active carbon
- precipitation of heavy metals
- Thickening up to 80%
- Ionex resins

Production of PLA

PLA

Production of lactic acid using Rhizopus mold

- Advantages and disadvantages compared to lactic acid bacteria:
- Using defined media
- Inorganic nitrogen source
- High initial sugar concentrations
- Production of exclusively L-lactic acid
- X side production ethanol, fumaric acid ...

Rhizopus

Rhizopus oryzae

- <u>Taxonomic classification</u>: Zygomycota, Mucorales
- Reproduction: sexual zygosporangia, asexual sporangiospores. Heterothalic species.

Formation of lactic acid

GlycolysisUnder Aerobic Conditions - More Lactate

Under anaerobic conditions - more ethanol

Silage production

Target:

- preserving feed by means of lactic fermentation
- prevention of toxin production
- aerobic stability
- no butyric acid, low acetic acid content

Factors influencing the ensiling process

- Substrate composition: grass, corn ... (content of usable carbohydrates, starch ...)
- Inoculating silage preparation (homofermentative or heterofermentative mixed culture of lactic bacteria)
- Sufficient suction, airtight pit closure (anaerobic process)

The most common problems

- Molding of silage (wet silage) prevention
 homofermentative bacteria
- Poor aerobic stability prevention -Heterofermentative bacteria
- Secondary heating prevention acetic acid production - prevention of yeast growth

Fermented vegetable

Sauerkraut

Processing

- 1. Quality of raw material
- 2. Post-harvest crop sorting
- 3. Grinding, cutting
- 4. Sitting in a vat
- 5. Spice addition salt, caraway (sugar)
- 6. Inoculation
- 7. Own fermentation
- 8. Packaging
- 9. (Pasterization)

Fermentation

- Anaerobic
- homo- or heterofermentative lactic acid bacteria
- Undesirable processes: formation of biogenic amines, butyric acid, secondary alcoholic fermentation, contamination of the fermenting liquid with aerobic microorganisms

Itaconic acid

Use: Manufacture of plastics Production of printing ink Production of acrylics

Producer of itaconic acid :

Aspergillus terrreus, Aspergillus itaconicus

Production of itaconic acid

- Molasses medium (15% sugar)
- Continuous aeration
- Production temperature 45 ° C
- Neutralization of pH using calcium or ammonium hydroxide
- Influence of morphology on acid production

Izolation and purification

- Molasses medium (15% sugar)
- Continuous aeration
- Production temperature 45 ° C
- Neutralization of pH using calcium or ammonium hydroxide
- Influence of morphology on acid production

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture XI

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Mikrobial production of amino acids

Use of amino acids

- Food industry MSG (sodium glutamate) umami taste
- L-aspartyl-L-phenylalanine (aspartame)
- glycine, L-cysteine
- Feed industry Dietary supplements for D, Lmethionine, L-lysine and L-threonine (Ltryptophan)
- Pharmaceutical industry intravenous nutrition infusion solutions, drug production
- Cosmetics cysteine ...

Amino acids essential for humans

- L-isoleucine
- L-leucine
- L-lysine
- L-methionine
- L-fenylalanine
- L-treonine
- L-tryptohan
- L-valine

Industrial production of amino acids

- Chemical synthesis glycine, D, Lmethinonine
- Extraction from hydrolysates
- Fermentation MSG, L-lysine, L-threonine, L-phenylalanine, L-tryptophan
- Enzymatic catalysis

Туре	Amino Acid L-Alanine	Preferred Production Method		
I		enzymatic catalysis		
I	L-Asparagine	extraction		
I	L-Glutamine	fermentation, extraction		
I	L-Histidine	fermentation, extraction		
I	L-Isoleucine	fermentation, extraction		
Ι	L-Leucine	fermentation, extraction		
L-Methionine		enzymatic catalysis		
I	L-Proline	fermentation, extraction fermentation, extraction extraction		
1	L-Serine			
I	L-Tyrosine			
I	L-Valine	enzymatic catalysis, fermentation		
П	L-Arginine	fermentation, extraction		
П	L-Cysteine	reduction of L-cystine (extraction)		
п	L-Tryptophan	fermentation		
ш	Glycine	chemical synthesis		
Ш	L-Aspartic acid	enzymatic catalysis		
Ш	L-Phenylalanine	fermentation		
ш	L-Threonine	fermentation		
IV	D,L-Methionine	chemical synthesis		
IV	L-Glutamic acid	fermentation		
IV	L-Lysine	fermentation		
Туре І	100-1000 t a -1			
Type II	1000			
Type III	8000-100000 t a - '			
Type IV	100 000–800 000 t a ⁻¹			

Tab. 2. Production of Amino Acids, Methods and Volume

Microbial amino acid production

Food industry

L-glutamic acid. L-asparagic a. L-phenylalanine

In foods 0.1-0.8% MSG (sodium glutamate)

- Feed D, L-methionine L-lysine
- L-threonine
- L-tryptophan

Pharmacy L-alanine L-arginine L-glutamine L-histidine L-isoleucine L-leucine, L-valine L-methionine L-proline L-serine

A taste of amino acids

Fig. 1. Market development of biotechnological produced amino acids.

Fig. 1 Global market amino acids, 2004: US \$4.5 billion

US\$ millions

BY

SA

Microbial strains for amino acid production

- 1. Wild strains *Corynebacterium glutamicum* and *Brevibacterium flavum* for the production of L-glutamic acid.
- 2. Mutant strains:
 - auxotrophic
 - resistant to amino acid analogues
 example production of L-lysine and L-tryptophan
- 3. Recombinant strains *E. coli* example produces L-threonine

Amino acid	Strain/mutant	Titer (g/l)	Estimated yield (g/100 g sucrose)
L-Lysine HCl	C. glutamicum B-6	100	40–50
L-Threonine	E. coli KY 10935	100	40–50
L-Tryptophan	C. glutamicum KY9218/pIK9960	58	20–25
L-Tryptophan	E. coli	45	20–25
L-Phenylalanine	E. coli MWPWJ304/pMW16	51	20–25
L-Arginine	Brevibacterium flavum AJ12429	36	30-40
L-Histidine	C. glutamicum F81/pCH99	23	15-20
L-Isoleucine	<i>E. coli</i> H-8461	30	20-30
L-Serine	Methylobacterium sp. MN43	65	30–35
L-Valine	C. glutamicum VR 3	99	30-40

Culture medium for amino acid production

- Carbon source molasses, glucose syrup, (methanol, n-alkanes ..)
- Nitrogen source in small amounts, regulation of pH with ammonia
- Source of phosphorus, other minerals
- Supply of oxygen and / or CO₂

Bioprocess management

- Inoculation 1:10
- Usual size of production bioreactors 50-500 m³
- Batch or fed-batch process
- Repeated fed-batch process (part of the old medium with cells is used as an inoculum)
- Continuous process

Isolation and separation of amino acids

- (Removal of cells centrifugation, decantation, filtration), not always for feed lysine
- Ionex
- Concentration and crystallization X requirements for wastewater treatment

L-glutamic acid

Corynebacterium glutamicum (discovery in 1957) G⁺, nonsporulating, immobile, requiring biotin Both wild, mutant and recombinant strains are used

Key factors influencing the fermentation of L-glutamic acid

Presence of biotin for growth optimal for production at suboptimal concentration

Adding penicillin or tween or cultivation of strains requiring oleic acids under limiting conditions - allowing acid transport from cells

Supply of oxygen

Carbon sources used: molasses, cereal hydrolysates Multi-step inoculation, fed-batch cultivation, cultivation in air-lift bioreactors, cultivation time - 40-60h, 150g / I glutamate .

Isolation of L-glutamic acid

- Centrifugation or filtration of biomass
- Concentrating the rest of the medium
- Crystallization
- Filtration
- Drying
- Yield 65-70% in isolation, remainder use as fertilizer

L-aspartic acid

Enzyme catalysis - L-aspartate-ammonium lysate Fumar acid + $NH_3 \rightarrow L$ -aspartic acid

Enzyme from *E. coli,* immobilized, sometimes whole *E. coli* cells immobilized in the polyacrylamide gel

Product Separation - Crystallization after acidification

L-lysine

- C. glutamicum mutants:
- a) Auxotrophic mutants auxotrophic to an amino acid with the same metabolic pathway as L-lysine (Thr, Leu, Met, Hse) - limitation of feedback inhibition
- b) Regulatory mutants resistant to toxic L-lysine analogues - high concentrations of lysine do not inhibit the enzyme aspartate kinase
- c) Combined mutations

 $^{+}H_{3}N_{2}$ С—н CHb CHo CHo CHb NH_{3+} Lysine (lys)

COO

Auxotrophic mutant

Regulation mutant

Cultivation

- Fed-batch, addition of ammonium sulphate to feed, carbon source limitation, 60h, final end. lysine 95 g / l
- Product isolation cell removal, absorption of lysine to ion exchanger, crystallization or spray drying as Llysine hydrochloride

Recombinant *E. coli* strains The most successful *E. coli* K12 with the plasmid carrying the thr operon

Isolation of Thr from the filtrate after thickening, discoloration crystallization

L-threonine

L-tryptophan

- Enzymatic production of indole and Lserine under the effect of tryptophanase enzyme
- Fermentation using precursors indole (C.glutamicum) or anthranilic acid (B.subtilis, B.amyloliquefaciens) X toxic by-products
- Direct fermentation from sugar substrates using auxotrophic or regulatory mutants (*Brevibacterium flavum, C. glutamicum, B. subtilis*)

Tryptophan (trp)

Amino Acid Production

Production of amino acids for the pharmaceutical and cosmetic industries

- Protein hydrolysates
- From chemically defined precursors using enzymes
- Fermentation from sugar substrates

L-alanine

From L-aspartic acid using immobilized *Pseudomonas* dacunhae cells

L-arginine

Fermentation of sugar substrates by regulatory mutant

C. glutamicum and B.subtilis

L-glutamine

Using wild strains of Corynebacteria

L-histidine

C. glutamicum and S.marcescens - regulatory mutants

L-isoleucine

Using *C.glutamicum* with a precursor of 2-ketobutyrate Fermentation of saccharides by recombinant strains of *C.glutamicum*, *S.marcescens* and *E.coli*

L-leucine and L-valine	соо [.] + _{Н3} N—с—н	соо [.] +н ₈ м—с—н
Production of L-leucine from 2-ketoisocapronate under the effect of <i>C.glutamicum</i> transaminase enzyme	сн н, с́сн	L CH2 CH H3C CH3
Direct fermentation using <i>S. mutationscens</i> and corynebacteria control mutants	Valine (val)	Le ucine (le u)
L-methionine	coo [.]	
Enzymatic conversion of N-acetylmethionine using acylase from <i>Aspergillus oryzae</i>	+ң _з м_с_н ·	
Conversion of D, L-5- (2-methylthioethyl) hydantoir by the growth of <i>Pseudomonas</i>		
L-proline	Methionine	
Control and combined mutants of <i>B.flavum, S. marcescens</i> and corynebacteria	(met)	coo [.]
L-serine +u.N.		¹ +нъм.—с.—н
From glycine and formaldehyde with serine hydroxymethyltransferase from <i>Klebsiella</i>		н—с—он н
Prolit	ne	Serine
(рю)		(SeI)

BY

SA

Enzymatic production of L-methionine and L-valine with acylases

Current strategies to boost amino acid production

Biosynthetic pathway enhancement, reduction of secondary metabolites, prevention of feedback inhibition, enhancement of NADPH production, reduction of secondary metabolic pathways, enhancement of cellular export

D

SA

BY

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture XII

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work.

If you have any reservations, please contact the author(s) of the specific teaching material in order to remedy the situation.

Biogas

http://www.czba.cz/mapa-bioplynovy

 \bigcirc

SA

Ŧ

BY

CC

Urban sewage and industrial effluent sludge gas.

* Estimation. 1 - DOM non Inclus. French overseas departments excluded.

Source: EurObserv'ER 2010.

Autres biogaz. Other biogas.

Unité décentralisée de biogaz agricole, unité de méthanisation des déchets municipaux solides, unité centralisée de codigestion. Decentralised agricultural plant, municipal solid waste methanisation plant, centralised co-digestion plant.

Anaerobic digestion of organic matter

Types of substrate

- substrate agricultural crop and animal waste, maize, communal waste, food and agricultural waste
- mixed culture of anaerobic microorganisms
- process hydrolysis, acidogenesis, acetogenesis, methanogenesis
- the resulting product biogas (55-70% CH4 + CO2 + hydrogen sulphide, ammonia, hydrogen ...)
- biogas treatment removal of water, CO2, hydrogen sulfide ...
- by-product digestate (fertilizer)
- use of biogas heat production, heat production + electricity (cogeneration)

Important parameters of anaerobic digestion

- Oxidation Reduction Potential:
- -100 to 100 mV for non-methanogens, -400 to -150 mV for methanogens
- Temperature (mesophilic or thermophilic digestion)
- Substrate
- pH
- C / N ratio
- Inhibitors
- Inoculum
- stirring

Microbiology of anaerobic digestion

I. Hydrolysis and acidogenesis

Clostridium, Butyrivibrio, Ruminococcus, Bacteroides – <u>hydrolysis, fermenting bacteria</u> Propionibacterium, Acetivibrio, Bifidobacterium, Eubacterium, Lactobacillus, Selenomonas, Streptococcus... - hydrogen <u>producing acetogens</u>

Bifidobacterium

Ruminococcus

II. Acetogenesis

Acetobacterium, Acetoanaerobium, Acetogenium, Butyribacterium, Clostridium, Eubacterium, Pelobacter

homoacetogens

Acetobacterium

III. Methanogenesis

Methanosarcina, Methanothrix

Methanosarcina

Biogas production

- substrate agricultural, plant, animal waste, maize, municipal waste
- •Mixed culture of anaerobic microorganisms
- process hydrolysis, acidogenesis, acetogenesis, methanogenesis
- •Resulting product– biogas (55-70% $CH_4 + CO_2 + H_2S$, ammonia, hydrogen..)
- •Biogas adjustement–dewatering, removal of CO₂, H₂S ...
- by-product digestate (fertilizer)
- use of biogas heat generation, cogeneration (production of heat and electricity)

Biogas system

Slurry and solid biomass are suitable for biogas production. A cow weighing 500 kg can be used to achieve e.g. a gas yield of maximum 1.5 cubic metre per day. In energy terms, this equates to around one litre heating oil. Regrowable raw materials supply between 6 000 cubic metre (meadow grass) and 12 000 cubic metre (silo maize/fodder beet) biogas per hectare arable land annually.

Gas treatment plant

The methane content and the quality

of the biogas are increased to make

Basic parts of Biogas plant

INFLUENT COLLECTING TANK (Mixing tank): To homogenize various substrates & to setup required consistency.

4. <u>DISPLACEMENT PIT</u> (SLURRY STORAGE) The fully Digested slurry leaves the Digester through the Outlet pipe into it.

2. DIGESTER

 The bacteria multiply & produce Biogas into the Digester.
 Digester provides the required conditions for this process

3. GAS HOLDER & GAS PIPE

 The Biogas is stored until consumption into the Gasholder
 The gas pipe carries the Gas to the Desired place of Consumption.

*Depending on the plant type & requirements Variations & Additions in components are possible Sketch/Photo source: gtz/GATE

Types of Biogas Plants

On the Basis of the <u>type of construction</u> the 3 well performing & Mature Designs suitable for <u>Farming Households</u> are:		
A. FIXED-DOME PLANT : - Relatively low cost	B. FLOATING-DRUM PLANT : - Which rises according to the	C. PLASTIC COVERED / BALLON PLANT:
 Long life (20yrs or more) Least Maintenance. Simple Mechanism No day/night temp Fluctuations so better 	volume of gas production - Easy to understand & operate - Provide Gas at constant pressure - Stored Gas-volume	 Standardized prefabrication Suitable for high ground water table - high digester temp - warm climate Uncomplicated Cleaning, Emptying & Maintenance Low gas pressure, short life, damage, not repaired locally
Bacteriological processes - Labor intensive – Employment - Great care-design& workmanship.	recognizable - Expensive, Maintenance Intensive (painting, cleaning) - Drum life is Short(abt 10years)	

Gas containers for biogas plants

- 1. Internal (part of bioreactor)
- External for storage of biogas double- membranes for pressure balancing

Adjustment of biogas quality

Raw biogas –saturated with water, containing H_2S , CO_2 , other volatile compounds

- De-watering— condensation (cooling), adsorbtion on silicagel
- Removal of sulphur activated coal (obtaining sulphur), biological way – *Thiobacillus* (aerobic – cca 2%, immobilization of bacteria)
- Removal of CO₂ absorbtion in Ca(OH)₂, organic solvents, active coal, zeolites, membrane separation...

Safety of biogas stations

Burner for combustion of bioagas excess—accident prevention, Maintenance of cogeneration unit ...

Burner

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture XIII

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work. If you have any reservations, please contact the author of the specific teaching material in order to remedy the situation.

Waste disposal in food/biotechnological industry

Degradation of waste compounds

- Aerobic systems activated sludge or biofilm
- Anaerobic systems consortium of microorganisms including methanogens
- Solid waste composting

Aerobic or anaerobic waste disposal?

Aerobic

Activated sludge + water More biomass Convenient for mild poluted water Low investment but high operation cost Nitrification processes Second stage for phosphorus removal

Anaerobic

Biogas + sludge + water Heavily poluted water Can be combined wit aerobic treatment as first step High investment but low operation cost Denitrification processes First stage for phosphorus removal

Denitrification - process by which nitrites or nitrates are reduced to nitrogen gas

Phosphorus cycle

Two-step biological reduction of phosphates

Aerobic treatment of waste water

- Activated sludge formation (growth of biomass under aerobic conditions)
- Settling tank– separation of biomass from water by sedimentation

Wastewater treatment

Mixing, aeration, decantation, recyclation of sludge

Prague wastewater treatment – formation of activated sludge

Prague waste water treatment – settling tank

Biofilm formation

- Adhesion to surface of convenient material
- Carrier with microbial population rotation or trickling bed

Moving bed biofilter

carrier material

3

SA

BY

Biofilter

Trickling Filters

- The trickling filter or biofilter consists of a bed of permeable medium of either rock or plastic
- Microorganisms become attached to the media and form a biological layer or fixed film. Organic matter in the wastewater diffuses into the film, where it is metabolized. Periodically, portions of the film slough off the media

BY SA

Composting

- Aerobic process for solid waste disposal
- Municipal waste, activated sludge, biological waste
- Degradation of dangerous compounds
- Volume reduction
- Drying
- Increase of temperature during composting destroying pathogenic microorganisms

Composting phases

Tedders of compost piles - aeration, mixing

9

SA

Tunnel composter

EUROPEAN UNION European Structural and Investing Funds Operational Programme Research, Development and Education

Biotechnology in Food Industry

Lecture XIV

Petra Patáková petra.patakova@vscht.cz

The published materials are intended for students of the University of Chemistry and Technology, Prague as a study material. Some text and image data contained therein are taken from public sources. In the case of insufficient quotations, the author's intention was not to intentionally infringe the possible author(s) rights to the original work. If you have any reservations, please contact the author of the specific teaching material in order to remedy the situation.

Winemaking

Winemaking-vinification-eonology

Viniculture – planting, growing and harvesting vine grapes Wine-making – production of wine from grapes

Vitis vinifera – species of genus Vitis

- thousands of different varieties of Vitis vinifera grapes
- liana
- the fruit is a berry, known as a grape

Varieties: wine x table grape

Vinyards: hot and sunny climates

- to fully ripen
- develop a balance between acids and sugars
- latitude 30-50°
- important factors are climate, slope and soil

flatter terrain x slope - greater intensity of the sun's rays

Favorable soil conditions include: aeration, loose texture, good drainage and moderate fertility

- climates vary from country to country, selecting the best strain is an important decision in grape cultivation

http://www.wineappreciation.co.uk/BWAC%20 Tastings/Around%20TW.html

Volume in thousands of hectoliters; e.g., global production is around 247 million hl

	2013	2014	2015	2016	2017
Italy	54,000	44,200	50,000	50,900	39,300
France	42,100	46,500	47,000	45,200	36,700
Spain	45,300	39,500	37,700	39,300	33,500
United States	24,400	23,100	21,700	23,600	23,300
Australia	12,300	11,900	11,900	13,100	13,900
Argentina	15,000	15,200	13,400	9,400	11,800
China	11,800	11,600	11,500	11,400	11,400
South Africa	11,000	11,500	11,200	10,500	10,800
Chile	12,800	9,900	12,900	10,100	9,500
Germany	8,400	9,200	8,900	9,000	8,100
Portugal	6,200	6,200	7,000	6,000	6,600
Russia	5,300	4,900	5,600	5,600	5,600
Romania	5,100	3,700	3,600	3,300	5,300
Brazil	2,700	2,600	2,700	1,300	3,400
Hungary	2,600	2,400	2,800	2,800	2,900
Rest of World	31,000	27,100	26,800	27,300	24,600
World	290,100	269,500	274,700	268,800	246,700

...from grapes to wine!

WHITE GRAPES

BLACK (RED) GRAPES

Albariño Aligoté Arneis Bourboulenc Chardonnay Chenin Blanc **Clairette Blanche** Colombard Fiano Garganega Gewürztraminer Grenache Blanc Grenache Gris **Grüner Veltliner** Kerner Maccabéo Marsanne Melon Morio-Muskat Müller-Thurgau Muscadelle Muscat

Neuburger **Picpoul Blanc** Pinot Blanc **Pinot Gris** Riesling Rousanne Sauvignon Blanc Scheurebe Semillon Terret Blanc Terret Gris Torrontes Ugni Blanc/Trebbiano Verdelho Verdicchio Vernaccia Viognier

Alicante Bouschet Aramon Barbera Black Corinth **Cabernet Franc** Cabernet Sauvignon Carignan Carmenère Carnelian Charbono Cinsault Corvina Councise Duriff Gamay Noir Grenache Grignolino Gros Verdot Malbec Merlot Meunier Mission Mourvédre/Mataro Muscardin

Negrette Nebbiolo Petit Verdot Petite Sirah Picpoul **Pinot Noir Pinot Meunier** Pinot St. George Pinotage Primitivo Rubired **Ruby Cabernet** St. Laurent Sangiovese Souzão Syrah/Shiraz Tempranillo Terret Noir Tinta Barroca Tinta Cão **Tinta Negra Mole** Vaccarese/Camarese Valdepeñas Valdiguié Zinfandel

http://www.rosettawines.com/main.asp?requ

est=ARTICLES&article=7

Table grapes

- primarily intended for human consumption
- bigger beries, big stem, rigid and firm skin
- lower sugar and acids content

Grapes for wine production

- Grapes suitable for must or juice production
- Black grapes manufacturing of red wines
- White grapes manufacturing of white wines

Grapevine growing cycle

Influenced by: weather, Vitis varieties, vineyard locality

Bud break – bud burst – shoots grow – flowering

- green berry rapid increase in volume production org. acids and precursor phenolic and aromatic substances
- Slow berry growth change colour, softening sugar accumulation, fenol. and arom. substances – acidity decreasing
- Final ripening sugar and anthocyanes accumulation acidity and tanines decrease
- over-ripening of grapes and the shrinkage of the berry gradual drying of stems, flow of water and nutrients stops,water evaporation,increase in sugar content...

Harvesting

picking of grape clusters from the grapevines

Term dependent on: variety, locality, climate, grapes health, desired product (white grapes earlier to prevent looses in acidity, black latter – phenolic maturity)

Optimum maturity:

□ determination of sugar, polyphenol and acid concentration

Grape bunch morphology

Cluster - stem and berry Berries - 95 – 98 % from total cluster mass.

Berry morphology

Skin, pulp, seeds

Berry composition

Skin (6-12% hm.)

- □ Wax layer on a berry surface (protective fce)
- □ celulose, hemicelulose, pectine rigidity and flexibility
- □ tanines (more in black varietes)
- Aromatic substances and pigments (flavones a anhtocyanes dyes)

Seeds (2-5% hm.)

□ In average 2-3 seeds in 1 berry

🛛 oil

tanines

Pulp (83-92% hm.)

Sugar and acids – concentrated in the middle

Harvest Destemming Crushing

Maceration Pressing

Alcohol fermentation

Malo-Lactic fermentation

Racking to remove the lees

Clarification/Stabilisation/Preservation Maturation Filtration Botteling Ageing

Harvest

Hand picking (gentler handling, bunch selection) x Mechanical harvest Video - https://www.youtube.com/watch?v=yCLoXZssTe4

Transportation from vineyard to winery

Partialy desintegrated berries -risk of oxidation, contamination

- Temperature at harvest (as cool as possible, active cooling in hot region)
- As quick as possible
- First addition of SO₂

Destemming - crushing

Destemming – removal of stems **Crushing** –release of juice

Stems – harsh and astringent polyphenols – mainly catechins and leucoanthocyanins

Crushing with stems – extraction of sensoricaly unwanted substances

Destemming and crushing in one step

Specialized tools – destemmer -<u>https://www.youtube.com/watch?v=KPygrlCeRRQ</u>

Addition of of SO2 into crushed grapes – suppresion of natural MO, increase in pigments solubility

Grape must composition

Factors with highes impact:

- Vitis variety, vineyard location, soil type + composition
- weather (rain falls, temperature)
- mechanization, grape vine training
- □ grapes processing (desteming, crushing, pressing...)

Složení hroznového moštu

- sugars
- Organic acids
- N-substances
- phenols
- aromatic substances
- mineral substances
- pectines
- vitamins
- Natural pigments
- fat, oil, wax

Sugars - carbohydrates

- sucrose minority sugar transporter
- Glucose and fructose main sugars, fermentable
- Pentoses non-fermentable (arabinose, xylose), low content
- polysacharides fermentable after enzymatic cleavage

glucose

fructose

sucrose

Sugar content – must density

- □ Hydrometer scales to measure density
- 4 different scales are used internationally

°Brix - Antoine Brix °Balling – Karl Balling °Baumé - Antoine Baumé – used in Australia °Oechsle - Ferdinand Oechsle – used in Germany

historicaly, different reference teperatures used for settings
nowadays – Brix and Balling are identical setted for 20°C
1° on the Baume' Scale is equivalent to 1.81Brix (or Balling)
Oeschle - difference in weight of one liter of must compared to one liter of water

Organic acids

- Decrease during ripening to 6-12 g/l
- 70-90 % tartaric and malic acids major acids in grape must
- Lower content: citric acid, succinic acid, lactic, formic and acetic acid
- **Tartaric acid –** responsible for majority of acidic taste of must and wine

2

□ Malic acid - sharp, harsh and immature taste tones

Nitrogen substances

- □ 240-1600 mg/L total amount of nitrogen
- **aminoacids** nutrients for yeasts + precursor of aromatic substances
- **peptides** aromatic compounds + wine body (light to full)
- **proteins** enzymes + wine stability
- □ ammonium inos, amines, nitrates, nitrites

Fenolic substances

- **D** Big difference in content in black and white grapes
- □ Highest amount: stems, seeds, skin
- Responsible for colour, bitterness, astringency, antioxidative properties
- \rightarrow antocyanes
- Pigments in red and rose wines
- □ Mostly in a form of glycosides

\rightarrow tanines

□ flavan-3-oly: katechin, epikatechin, prokyanidines

Aroma and flavour

- Varietal aroma (odrůdové aroma), grape-derived
- Free form of aromatic substances may be lost or decreased during fermentation
- Chemically bound aromatic substances aroma developes during fermentation and wine aging
- Esters reaction of acids and alcohol in the wine
- monoterpenes two isoprene units floral aroma (muscat)
- norisoprenoides C₁₃-norisoprenoids Carotenoid derived aromatic compounds, spice notes (Chardonnay)
- Methoxypyrazines mostly undesirable, green flavour of Sauvignon Blanc

volatile phenols –unplesant aroma

Inorganic constituents

soil (geografy), weather, nutients addition -fertilizers

kationty: K+, Mg2+, Ca2+, Na+ anionty: CO32-, PO43-, SO42-, Cl-

Pectins

Polysacharide rich in galacturonic acid Decreases exctraction efficiency Complicate sedimentation and filtration Possible adition of pectolytic enzymes

Vitamins

C (60-80 mg/l), tiamin (B1, 150-300 mg/l), panthotenic acid (B5), biotin,folic acid , cobalamin (B12)

Natural pigments

white grapes → chloroplasts (chlorophyl) and chromoplasts (carotenoids, xanthophyles)

black grapes **→** anthocyanes

Crushed grapes: White wine pressing Red wine maceration, start fermentation

Pressing - separation of liquid part from solid grape residues (grape pomace)

□ <u>factors influencing the process</u>:

Pressure pressing – efficiency of pressing , the lower the better type of press (mechanical, hydraulic, pneumatic) Degree of crushing grapes speed of pressing – prolonged for high quality wine vine variety, grape maturity presses: mechanical, hydraulic, pneumatic

Must yield = approx. 70%

Whole bunch pressing - white wine from red grapes - juicy, low phenolic, fine wines

Treatment/adjustment of must composition

Settling/clarification

Juice from the press is drained into tanks, where skin, stalks and pip fragments settle down.

- □ Carried out under decreased temperature
- Approx 24h
- □ Rate of grape solids remained depends on desired product
- □ Modern clarification: filtration or centrifugation

Adjustment of must composition

Adjustment - take into consideration legislation of particular state/region

Sugar content

Addition of saccharose

Addition of concentrated must: vacuum evaporation 70°C, lyophilization, reverse osmosis

 Dependent on the climate of particular region: warm – high sugar content cool – low sugar content

Adjustment of must acidity

Target: to reach harmonic balance between acidity and sweetnes

Optimal acidity 6-7 g/l (for tartaric acid) - pH 3,1-3,4

□ Higher pH → risk of contamination – needs more SO₂, low colour stability, wines without freshness

□ Changes in acidity: fermentation based production of organic acids precipitation of tartarate malolactic fermentation Blending/coupage – mixing diferent musts with distinct acidity Tartaric acid addition CaCO3 – precipitation of calcium tartarate

Must adjustment

Application of sulfur dioxide SO2

- Preventive action aggainst contaminant MO (bacteria generaly more sensitive than yeast)
- **stabilization** suport proteins coagulation
- □ antioxidant prevets oxidation by reaction with O2
- □ antienzymatic effect inhibition of oxidative enzymes
- Amount in wine given by legislation higher amount: negative health impact, negatively influences wine taste and aroma

Ways of SO2 application

- Burning of sulfur plates
- Potassium metabisulfite K2S2O5 (powder) decreases asidity via tartarate precipitation
- □ gaseous / liquid SO2 from pressure bottle

Fermentation

Alkoholové kvašení

□ theoretic yield EtOH: 51% w/w – derived from ethanol fermentation equation!

□ 5-8% sugar utilized for cell growth and side products

□ Side fermentation products produced directly by MO metabolism:

Glycerol
Lactic acid
Acetic acid
Succinic acid
Citric acid

Secondary products of fermentation process

Highly impacted by producing MO used

□ <u>Higher alcohols</u> – n-propanol, amylalcohol, isobutanol (fusel alcohol)

- From pyruvate or by aminoacids deamination
- pozitive as well as negative impact on aroma
- Discusion about its cause of hangover syptoms

<u>Esters</u> – reaction of alcoholes with organic acids -Fruity tones

□ aldehydes, ketones, acetoin, diacetyl (buttery flavour), etc.

□ Saccharomyces cerevisiae, Saccharomyces bayanus

- □ More than 15 yeast genus (eg. *Brettanomyces, Candida, Saccharomycodes*)
- □Industrial strains are selected for wine production:
- according to fermentation rate
- yeast activity
- ethanol tolerance
- fermentation under decreased temperature
- production of sensorically active compounds

Producing MO

Different varieties selected for distinct wine types

Pure strains x mixture of more strains

cultured stock yeast x wild yeasts

Cultured stock yeast are stored in form of *"active dry yeast"* - need to be activated befor use.

Factors affecting alcoholic fermentation

- Temperature (optimum 20-27°C)
- Nutrients
- Sugar content higher concentration slows down proliferation higher osmotic preasure
- Ethanol concentration
 - Wild type yeasts up to 4% v/v
 - *S. cerevisiae* up to 12-13% v/v
 - *S. bayanus* up to 15-16% v/v
- **CO2** preasure (partial ventilation during fermentation)
- activatores (vitamines, minerals) × inhibitores (pesticides, tanines...)
- **Presence of O2**

Industrial fermentation

carried out in **Controled vessels**

Stainless steel

- Temperature regulation double coat or internal cooler
- CO2 preasure regulation active exhaustion
- Regular regime for "cap" immersion into liquid - to ensure contact between skins and wine

Fermentation timing vary from 2 days to 3 weeks - according to wine style

After fermentation is completed:

- white wine – settling down the leeds (Gross lees) – racking (draw off)

- red wine – free run wine removed from vessel – pressing the residual grape mass (pomace)

"extended maceration" – prolonged contact with seeds, skins, yeast after fermentation) – eg. Bordeaux wines

Malo-Lactic fermentation

Biotransformation of malic acid to lactic acid

Lactic acid bacteria fermentation – spontaneous x controled

spontaneous process – can cause negative sensorical profile

starts spontaneously under higrer temperatures and lower
 SO2 content

3

controled process - inoculation by selected strains, mostly
 Oenococcus oeni

Malo-Lactic fermentation

Lactic acid – more pleasant taste than malic acid (imature, sharp tones)

- decrease in acidity, harmonization of acids, sugar and EtOH
- improves fullnes of wine body
- positive effect only for some types of wine (preferably red)
- warm regions spontaneous process undesirable –decreasing acidity
 increased danger of contamination owing to pH

Clarification – wine clarity – consumers recquirement

Two fractions to give rise turbidity:

1) gross particles – yeast, debris, grape residues

2) <u>macromolecules</u> – e.g. proteins, tanines, pectines, gums, metalo- colloids

Stabilization process

 to stabilize substances diluted in wine for a reasonable shelf-live (a minimum 1 year)

- if left for very long period - it would stabilize itself

- an effort to expedite stabilization employing specialized procedures
- when carried out improperly can lower wine quality

gross particles

- yeast, debris, grape residues
- removal by filtration or sedimentation
- filtration serves to clarify not to stabilize!

macromolecules - tends to increase turbidity via reactions in bottle

Clarification/fining – complex process – the main principle is based on electrostatic attraction

- fining agent carry particular charge and react with oppositely charged wine constituent to form precipitate

 chemical reaction as well as absorption process can take place

Fining procedure:

Mix fining agent in wine \rightarrow suspenzion \rightarrow sedimentation \rightarrow racking \rightarrow filtration

Fining agents:

- 1) Proteins such as gelatine, casein, albumen etc.
- 2) Earth such as bentonite, kaolin
- 3) Polysaccharides alginates, arabic-gum
- 4) Carbons
- 5) Sythetic polymers nylon, polyvinyl polypyrrolidone (PVPP)
- 6) Silicone dioxide gel
- 7) Tannines
- 8) Miscellaneous, eg. Metal chelators, enzymes, ...

Fining agents

Proteinaceous fining agents

-adjust <u>polyphenol content</u> of wine by hydorgen bonding between the phenolic hydroxyl and carbonyl oxygen of peptide bond

- Decreases bitter and astringent substances

<u>Casein</u>

- Heterogenous phosphoprotein from milk
- Obtained by coagulating milk

Egg white

- One of the oldest fining agent
- active substance egg albumin

<u>Gelatin</u>

Produced by hydrolysis of multi-stranded collagen

Fining agents - continuing

<u>Agar</u>

polysacharide from algae (linear polymer of galactose)
 negative charge – removing of proteine based turbidity

Active coal

•big surface – colour adjustment, defect of flavour

Polyvinyl polypyrolidone

- Synthetic, insoluble plastic
- Remove low molecular weight phenolics

<u>Bentonit</u>e

Natural, clay-like material of volcanic origin
 negative charge – proteineous cloudiness
 diferent types: Ca-bentonit, Na-bentonit, Ca-Na-bentonit
 Not recomended for red wines- removes colour

Tartaric acid

Precipitate of salt of taratric acid – represents major nonbiological instability

- the biggest complaint in wine trade
- Can not be fully prevented
- Cryslats are harmless

Stabilisation:

Static cold stabilisation: wine is chilled down to freezing point (approx. -4°C) and stored insulated for 7-14 days

<u>Contact cold stabilisation</u>: addition of KHT (potassium bitartarate) crystals to promote crystalization via increase in nucleation sites

<u>Ion-exchange stabilisation</u> – most frequent replacing K+ with Na+

Wine preservation

Ethanol and tannines

- natural preservatives
- do not ensure 100% protection
- residual sugar serves as an energy source
- Lactic acid bacteria, acetic acid producing bacteria

Most frequent is application of SO₂

Another possibilities (prior botteling):

sorbic acid – prevents yeast proliferation sterile <u>filtration</u> prior botteling

pasteration (65 – 70°C)

All the procedures must be carried out - to preserve the quality of wine while maintaining product stability

Wine maturation and ageing

Wine maturation and ageing

Family of interlinked chemical changes

Maturation – bulk storage period

Ageing – smaller container storage period (bottles)

"mature" wine is "ripe" to bottel, in which it "age"

Wine maturation and ageing

Maturation

Mostly: oxidative reactions extraction during maturation in wooden barrels non-oxidative polymerisation

White wines - kept mostly under reducing atmosphere

Red wine - prospects of micro-oxidation (occures naturally when aged in wooden vat)

- maturation in oak barrel: month – years

- extraction of sensoricaly active compounds (mostly phenols and aldehydes)

barrique: at least 3 month in oak barrel of defined volume

(210 – 250L) used not more than 36 month

Mikro-oxygenation

Relatively new (1991)

Widely popular - oxygenation of fully fermented wine

A small dose of oxygen is supplied into wine as microscopic bubbles

Action of oxygen is complicated and influenced by manny factors

the main effect – modification of phenolic compounds resulting in:

"smoother" and "softer" wine

Harvest Destemming Crushing

Maceration Pressing

Alcohol fermentation

Malo-Lactic fermentation

Racking to remove the lees

Clarification/Stabilisation/Preservation Maturation Filtration Botteling Ageing

White wine technology

- Grape ripenes given by aromatic ripenes and sugar and acids contents
- Destemming
- Crushing
- Pressing
- Short maceration if recquired, lower temperature
- Sedimentation (filtration)
- Must adjustement
- Fermentation: optimal temp: 15-18°C (fresh 13-18°C)
- Malo-Lactic fermentation mostly undesirable
- Reductive atmosphere
- 🛛 <u>.....</u>

Red wine technology

Key role – "fenolic ripenes of grapes"

Phenolic compounds more important than aromatic ones

Red wine technology

Destemming

- Crushing
- Must composition adjustement
- Fermentation and maceration
- Maceration higher temperature (28-30°C), if

recquired – "extended maceration"

- Pressing
- Malo-Lactic fermentation
- Micro-oxidative atmosphere
- Maturation in oak barrels
- ┛<u>.....</u>

Rose wine technology

Rose wine is produced from black grapes using white wine technology

- Lower content of anthocyanes and tannines
- Short maceration under low temperature
- Colour rose, pink, salmon-like
- Malo-Lactic fermentation applied according to specific recquirement

Na zdraví! Santé! Salud! Egészségére! Cheers!

