Balance and Chemical Calculation - test your starting knowledge

The following tasks cover the high-school knowledge in physics and chemistry that should be a base for your study in the course. The answers are given in square brackets.

Basic SI units and quantities

Liquid nitrogen is used as a refrigerating medium with a low boiling temperature -77 K . Convert this value to ${ }^{\circ} \mathrm{C}$.
[-196.15 ${ }^{\circ} \mathrm{C}$]

The standard pressure is defined as $10^{5} \mathrm{~Pa}$. Convert the value to kPa and MPa .
[100 kPa and 0.1 MPa]

How many mL is $2 \mathrm{dm}^{3}$ of water?
[2000 mL]

How many rain drops (with an average volume of $30 \mu \mathrm{~L}$) is needed to fill a swimming pool with a volume of 300000 L?
[10^{10} drops]
$1 \mathrm{~m}^{3}$ of silver weights approx. 10500 kg ; what is the weight of $1 \mathrm{~cm}^{3}$?
[10.5 g or 0.0105 kg]

Convert a density of $2.35 \mathrm{~g} / \mathrm{mL}$ to $\mathrm{kg} / \mathrm{m}^{3}$.
[2350 kg/m ${ }^{3}$]

Avogadro's number, moles

How many aluminium atoms are contained in a cube with an edge length of 1 mm ? ($A_{\mathrm{Al}}=26.98 \mathrm{~g} / \mathrm{mol}$; ρ $=2.7 \mathrm{~g} \mathrm{~cm}^{-3}$)
[6.027•10 ${ }^{19}$ atoms]

Calculate the molar mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ using known atomic masses of present elements ($A_{C u}=63.55$ $\left.\mathrm{g} / \mathrm{mol} ; A_{s}=32.06 \mathrm{~g} / \mathrm{mol} ; A_{O}=16 \mathrm{~g} / \mathrm{mol} ; A_{H}=1 \mathrm{~g} / \mathrm{mol}\right)$?
[249.61 g/mol]

What is the volume of 1 mol of oxygen that is stored at 500 kPa and $25^{\circ} \mathrm{C}$?
[4.958-10 ${ }^{-3} \mathrm{~m}^{3}$ or 4.958 L]

Mixture composition

Calculate the mass of a 25% solution which was prepared using 125 g of NaCl .
[500 g]

What is the mass fraction of water in $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$? $\left(M_{\text {Na2 } 2 \mathrm{O} 4 \cdot 1 \mathrm{H} 2 \mathrm{O}}=322.19 \mathrm{~g} / \mathrm{mol} ; M_{\mathrm{H} 2 \mathrm{O}}=18 \mathrm{~g} / \mathrm{mol}\right)$ [55.9 \%]

How many grams of KOH is dissolved in 200 mL of a 10% solution ($\rho=1.09 \mathrm{~g} \mathrm{~cm}^{-3}$) ?
[21.8 g]

Chemical reaction stoichiometry

How many grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}(M=142.04 \mathrm{~g} / \mathrm{mol})$ are produced when 20.0 g of $\mathrm{NaOH}(M=40 \mathrm{~g} / \mathrm{mol})$ react in the following neutralization:
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

What volume of $\mathrm{CO}_{2}(M=40 \mathrm{~g} / \mathrm{mol})$ is produced when 5 kg of $\mathrm{CaCO}_{3}(M=100 \mathrm{~g} / \mathrm{mol})$ is fully decomposed at 100 kPa and $800^{\circ} \mathrm{C}$?
$\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
[4.461 m ${ }^{3}$]

