Balance and Chemical Calculation – test your starting knowledge

The following tasks cover the high-school knowledge in physics and chemistry that should be a base for your study in the course. The answers are given in square brackets.

Basic SI units and quantities

Liquid nitrogen is used as a refrigerating medium with a low boiling temperature - 77 K. Convert this value to °C. [-196.15 °C]

The standard pressure is defined as 10⁵ Pa. Convert the value to kPa and MPa.

[100 kPa and 0.1 MPa]

How many mL is 2 dm³ of water?

[2000 mL]

How many rain drops (with an average volume of 30 μ L) is needed to fill a swimming pool with a volume of 300 000 L? [10¹⁰ drops]

1 m³ of silver weights approx. 10 500 kg; what is the weight of 1 cm³?

[10.5 g or 0.0105 kg]

Convert a density of 2.35 g/mL to kg/m³.

[2350 kg/m³]

Avogadro's number, moles

How many aluminium atoms are contained in a cube with an edge length of 1 mm? ($A_{AI} = 26.98 \text{ g/mol}$; $\rho = 2.7 \text{ g cm}^{-3}$) [6.027·10¹⁹ atoms]

Calculate the molar mass of CuSO₄·5H₂O using known atomic masses of present elements (A_{Cu} =63.55 g/mol; A_S =32.06 g/mol; A_O =16 g/mol)? [249.61 g/mol]

What is the volume of 1 mol of oxygen that is stored at 500 kPa and 25 °C?

[4.958·10⁻³ m³ or 4.958 L]

Mixture composition

Calculate the mass of a 25% solution which was prepared using 125 g of NaCl. [500 g]

What is the mass fraction of water in Na₂SO₄·10H₂O? ($M_{Na_2SO_4\cdot 10H_2O}$ = 322.19 g/mol; M_{H_2O} = 18 g/mol) [55.9 %]

How many grams of KOH is dissolved in 200 mL of a 10% solution ($\rho = 1.09 \text{ g cm}^{-3}$)? [21.8 g]

Chemical reaction stoichiometry

How many grams of Na_2SO_4 (M = 142.04 g/mol) are produced when 20.0 g of NaOH (M = 40 g/mol) react in the following neutralization:

$$H_2SO_4 + 2 NaOH \rightarrow Na_2SO_4 + 2 H_2O$$

[35.5 g]

What volume of CO_2 (M = 40 g/mol) is produced when 5 kg of $CaCO_3$ (M = 100 g/mol) is fully decomposed at 100 kPa and 800 °C? $CaCO_3 \rightarrow CaO + CO_2 \qquad [4.461 \text{ m}^3]$