Matice
| Reaktanty | Produkty | ||||||
| CuFeS2 | HNO3 | Cu(NO3)2 | Fe(NO3)3 | NO | H2SO4 | H2O | |
| a | b | p | q | r | s | t | |
| Cu | 1 | 1 | |||||
| Fe | 1 | 1 | |||||
| S | 2 | 1 | |||||
| H | 1 | 2 | 2 | ||||
| N | 1 | 2 | 3 | 1 | |||
| O | 3 | 6 | 9 | 1 | 4 | 1 | |
| náboj | |||||||
Bilance prvků
|
|
+ 1·a | = | + 1·p |
|
|
+ 1·a | = | + 1·q |
|
|
+ 2·a | = | + 1·s |
|
|
+ 1·b | = | + 2·s + 2·t |
|
|
+ 1·b | = | + 2·p + 3·q + 1·r |
|
|
+ 3·b | = | + 6·p + 9·q + 1·r + 4·s + 1·t |
Bilance elektronů (náboje)
Zadání pro program Mathematica
eqns = {
+ 1*a== + 1*p,
+ 1*a== + 1*q,
+ 2*a== + 1*s,
+ 1*b== + 2*s + 2*t,
+ 1*b== + 2*p + 3*q + 1*r,
+ 3*b== + 6*p + 9*q + 1*r + 4*s + 1*t,
+0*a +0*b== +0*p +0*q +0*r +0*s +0*t}
Solve[eqns]
Neznámých koeficientů je: 7, počet nezávislých rovnic je: 6. počet nezávislých rovnic je: 7 - 6 = 1. Jedno z možných řešení je:
a = 3; b = 32; p = 3; q = 3; r = 17; s = 6; t = 10Zadání (program Octave/Matlab) reaction_id-8-15.m
% % Jiri Jirat % Prague Institute of Chemical Technology % % % matice - 1. sloupec naboj, dalsi sloupce prvky % a = [ 0,1,1,0,0,0,2; 0,0,0,1,1,3,0; 0,1,0,0,2,6,0; 0,0,1,0,3,9,0; 0,0,0,0,1,1,0; 0,0,0,2,0,4,1; 0,0,0,2,0,1,0] hodnost = rank(a) % hodnost matice = pocet nezavislych rovnic b = a' % transpozice matice c = null(b) % nalezeni baze nuloveho prostoru matice b reseni = rref(c') % upravy na "row reduced echelon form"
Řešení (program Octave/Matlab)
a =
0 1 1 0 0 0 2
0 0 0 1 1 3 0
0 1 0 0 2 6 0
0 0 1 0 3 9 0
0 0 0 0 1 1 0
0 0 0 2 0 4 1
0 0 0 2 0 1 0
hodnost = 6
b =
0 0 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 0 2 2
0 1 2 3 1 0 0
0 3 6 9 1 4 1
2 0 0 0 0 1 0
c =
0.078087
0.832927
-0.078087
-0.078087
-0.442492
-0.156174
-0.260290
reseni =
1.00000 10.66667 -1.00000 -1.00000 -5.66667 -2.00000 -3.33333
Zadání (program Mathematica)
m = {
{0,1,1,0,0,0,2},
{0,0,0,1,1,3,0},
{0,1,0,0,2,6,0},
{0,0,1,0,3,9,0},
{0,0,0,0,1,1,0},
{0,0,0,2,0,4,1},
{0,0,0,2,0,1,0}}
NullSpace[Transpose[m]]