Matice
| Reaktanty | Produkty | |||||
| MnO2 | KClO3 | KOH | K2MnO4 | KCl | H2O | |
| a | b | c | p | q | r | |
| Mn | 1 | 1 | ||||
| O | 2 | 3 | 1 | 4 | 1 | |
| K | 1 | 1 | 2 | 1 | ||
| Cl | 1 | 1 | ||||
| H | 1 | 2 | ||||
| náboj | ||||||
Bilance prvků
|
|
+ 1·a | = | + 1·p |
|
|
+ 2·a + 3·b + 1·c | = | + 4·p + 1·r |
|
|
+ 1·b + 1·c | = | + 2·p + 1·q |
|
|
+ 1·b | = | + 1·q |
|
|
+ 1·c | = | + 2·r |
Bilance elektronů (náboje)
Zadání pro program Mathematica
eqns = {
+ 1*a== + 1*p,
+ 2*a + 3*b + 1*c== + 4*p + 1*r,
+ 1*b + 1*c== + 2*p + 1*q,
+ 1*b== + 1*q,
+ 1*c== + 2*r,
+0*a +0*b +0*c== +0*p +0*q +0*r}
Solve[eqns]
Neznámých koeficientů je: 6, počet nezávislých rovnic je: 5. počet nezávislých rovnic je: 6 - 5 = 1. Jedno z možných řešení je:
a = 3; b = 1; c = 6; p = 3; q = 1; r = 3Zadání (program Octave/Matlab) reaction_id-6-4.m
% % Jiri Jirat % Prague Institute of Chemical Technology % % % matice - 1. sloupec naboj, dalsi sloupce prvky % a = [ 0,0,0,0,1,2; 0,1,0,1,0,3; 0,0,1,1,0,1; 0,0,0,2,1,4; 0,1,0,1,0,0; 0,0,2,0,0,1] hodnost = rank(a) % hodnost matice = pocet nezavislych rovnic b = a' % transpozice matice c = null(b) % nalezeni baze nuloveho prostoru matice b reseni = rref(c') % upravy na "row reduced echelon form"
Řešení (program Octave/Matlab)
a = 0 0 0 0 1 2 0 1 0 1 0 3 0 0 1 1 0 1 0 0 0 2 1 4 0 1 0 1 0 0 0 0 2 0 0 1 hodnost = 5 b = 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 2 0 1 1 2 1 0 1 0 0 1 0 0 2 3 1 4 0 1 c = -0.37210 -0.12403 -0.74421 0.37210 0.12403 0.37210 reseni = 1.00000 0.33333 2.00000 -1.00000 -0.33333 -1.00000
Zadání (program Mathematica)
m = {
{0,0,0,0,1,2},
{0,1,0,1,0,3},
{0,0,1,1,0,1},
{0,0,0,2,1,4},
{0,1,0,1,0,0},
{0,0,2,0,0,1}}
NullSpace[Transpose[m]]